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Apple ][ Emulation on an AVR Microcontroller

Abstract –  The Apple ][  computer was one of the frst three completely  assembled
systems on the market. It was sold several million times from april 1977 to 1993. This 8
bit home computer was developed by Steve Wozniak and Steve Jobs. They paved the
way for the Apple Macintosh computer and the nowadays well  known brand Apple
with its products.

This  thesis  describes the implementation of  a  software emulator  for  the complete
Apple  ][  computer  system  on  a  single  Atmel  AVR  microcontroller  unit  (MCU).  The
greatest challenge consists of the fact that the MCU has only a slightly higher clock
speed as the Apple ][. This requires an efcient emulation of the CPU and the memory
management, which will be covered later on along with the runtime environment con-
trolling  the  emulator.  Furthermore  the  hardware  implementation  into  a  handheld
prototype will be shown.

In summary this thesis presents a successful development of a portable Apple ][ emu-
lator covering all aspects from software design over hardware design ending up in a
prototype.

Keywords: Apple ][, emulation, Atmel AVR microcontroller

Emulation eines Apple ][ auf einem AVR Microcontroller

Zusammenfassung – Der Apple ][ war einer der drei ersten kompletten Computersys-
teme auf dem Markt. Von April 1977 an wurde er rund 16 Jahre lang mehrere Millionen
mal verkauft. Entwickelt wurde dieser 8 Bit Homecomputer von Steve Wozniak und
Steve Jobs. Sie ebneten damit den Weg für den Macintosh und das heute gut bekannte
Unternehmen Apple.

Diese Arbeit beschreibt die Implementierung eines Softwareemulators für das kom-
plette Apple ][ Computersystem auf nur einem Atmel AVR Microcontroller. Die größte
Herausforderung besteht darin, dass der Microcontroller nur eine geringfügig höhere
Taktrate als die zu emulierende Hardware hat. Dies erfordert eine efziente Emulation
der  CPU und  Speicherverwaltung,  die  nachfolgend  zusammen mit  der  Laufzeitum-
gebung für die Emulation vorgestellt wird. Weiterhin wird die Umsetzung des Emula-
tors mit Display und Tastatur in Hardware näher erläutert.

Mit dieser Arbeit wird die erfolgreiche Entwicklung eines portablen Apple ][ Emulators,
von der Software über die Hardware bis hin zu einem Prorotypen, vorgestellt.

Schlagworte: Apple ][, Emulator, Atmel AVR Microcontroller
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Chapter 1: Preface

Chapter 1: Preface

Introduction

The market of microcontrollers grows from year to year and expanded in the last ten
years by 80%  [1]. Those tiny devices, equipped with everything a modern computer
contains, manage many things in our daily life. Because of the fact that they are based
on a →RISC instruction set architecture, →microcontrollers are so powerful that the
question arises whether it can emulate an entire historical personal computer.

A very interesting personal computer is the Apple ][, which was build by Steve Wozniak
together with Steve Jobs and sold from the beginning of the late 70 th. It was a very
popular and powerful system, providing very sophisticated graphical and technical fea-
tures for this time. Together with two other computer systems, it was the frst com-
plete assembled computer system commercially  available.  Other computer systems
were only available as self-assembly kits and not so powerful. It was build upon an 8
bit architecture, using the – for those days – famous MOS Technologies 6502 →micro-
processor (CPU), which was widely used in many computer related devices in the late
70th and 80th. Famous devices that make use of the 6502 are: the Apple ][ computer
series, the Atari 2600 game console, Nintendo NES game console (slightly modifed
6502 model), the Commodore VIC-20 and many other devices [2].

Since the aimed device does not only emulate the 6502 microprocessor, but also per-
form display output and other I/O to achieve an emulation of the entire computer
system by a microcontroller, it is too complex to evaluate it, using a theoretical model.
The research question is therefore not only to fnd out, if it is possible, but also to fnd
out the limitations which arise.

Motivation

This project provides the feasibility to investigate the facets of hardware related com-
puter science. This part plays an important role in the everyday life of everybody. Tiny,
embedded devices like microcontrollers are embedded in nearly every electronic de-
vice. From the washing machine over the electronic radiator thermostat to a car. Inside
the play feld of  microcontroller  devices one can learn and understand easily,  how
modern computers work and see, by example, the basic concepts of computers. This
“experiments”  can  be  done very  easily  on  microcontrollers,  because  they  are  very
simple in structure and so it is easy to get started in comparison to the x86 system
architecture. In addition to this, one will discover different aspects of communication
between electronic devices and learn to understand and use protocols like: →UART,
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→SPI or →TWI. Those protocols are not limited to the world of microcontrollers: com-
puters rely on this protocols by example to monitor the processor temperature using
sensors, which stream the data through the TWI protocol to the CPU. Or more famous:
the SD card can be accessed through the SPI protocol. This leads to the fact that the
world of microcontrollers is important for modern hardware and devices. By getting an
insight into this “world”, one is capable of understanding computers and their struc-
ture even better.

Developing a handheld device from scratch, which can be hold in one's own hands and
driven without the need of a computer, makes software real and touchable. Combining
this with a recreation of a historical important device, like the Apple ][, allows to pre-
serve nostalgia and brings the history of computer science to the present. 

By learning many things about computers,  microcontrollers and their structure and
creating a handheld device from scratch, to take a look into the early days of com-
puters and their usage, this is an ideal project for the purpose of an bachelor thesis.

What is emulation? And what's new with that?

Emulation is the process of a very precise simulation of original hardware, in order to
use software which was compiled for the original hardware, through the emulation on
different hardware which is incompatible [3].

In this case, the software written for the Apple ][ computer only works on exactly this
processor which was used by the Apple ][. By creating an emulator of the Apple ][ one
needs to simulate the processor in order to let the software, written for the Apple ][,
work on the emulator which runs on a completely different hardware.

But there is nothing new: by browsing through the world wide web one can fnd more
than enough emulators for all kinds of historical devices and also Apple ][ emulators.
These emulators work on a computer with a lot of computational power and they are
not very portable.

The idea of this thesis is to create an emulator in software and hardware, especially
designed only for the emulation of the Apple ][ system. The created device should be a
“handheld” device which is portable.  The used microcontroller  to run the emulator
relies – just like the Apple ][ – on an 8 bit architecture and has only a slightly faster
clock of 20 MHz versus 1 MHz of the Apple ][.

There is no doubt that the emulator works with a normal computer, decreeing over
multiple cores and many giga hertz of CPU speed. An important question is if the emu-
lation will work on a tiny microcontroller, which is only twenty times faster than the
emulated host, the Apple ][. And the device will not be fnished with the emulation of
the Apple ][ microprocessor. Display output, keyboard input and some other features
need to be implemented to make the device useable.

Talking about emulation is  talking about speed. By recreating the hardware of  the
Apple ][ with a software emulator, control overhead data is generated, which must be
processed and stored. The more sophisticated the architecture is, the more overhead
is generated and the calculation time grows. 

Besides the software part, this thesis features also the hardware implementation pro-
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cess of creating a physical device, using skills like soldering and building, facing differ-
ent problems which will arise from the electronic part of the project.

FPGAs as competitors?

A →FPGA can be used to less emulate but more “be” the target CPU of any device, by
example the Apple ][ computer. It can also imitate an entire system consisting of mul-
tiple microchips. And it was already used by different projects aiming an emulation of
the Apple ][, which can be found in the world wide web [4].

The “feld programmable gate array” (FPGA)  is a “programmable” integrated circuit.
Using a computer program a logical circuit, out of discrete logical gates, is created and
then programmed or build to the FPGA chip. After programming the FPGA actually is
the circuit, designed on the computer and realizes it in hardware. This allows various
projects and also the perfect imitation – not emulation, because it is rebuilt  out of
discrete logical components – of CPUs [5] (p. 21).

As seen by this brief introduction, FPGAs are a lot more powerful than microcontrollers
and can be used for sophisticated tasks like realtime image processing, by example.
Beside the fact that they are more cost intensive, the aim of this thesis is to use a
microcontroller to get an idea of how far the computational power can be lowered to
emulate the system. But it is also a challenge of costs, aiming to construct a device
which uses less components and is as cheap as possible.

Other embedded systems

Modern devices, like cell phones or tablets are using mostly →ARM processors. Those
are also available as chips to develop embedded applications. But they are baed on a
32 bit architecture and there is – just like the FPGAs – no motivation to try this project
with such a sophisticated architecture, because there is no challenge to develop the
emulation software and face problems. One could simply bring a Linux system onto
this chip and run emulator software from the web.

Demand profile

Due to the fact that this project is a thesis with the aim of an Apple ][ emulator, some
requirements were defned at the beginning of the project to ensure a high quality
result.

First of all, the overall target of this thesis is to build an emulator handheld device of
the original Apple ][ model from 1977 with a memory confguration of 12KB 1. The other
key requirements are:

• implementation of a 6502 microprocessor without the decimal mode in C
or assembly language

• interfacing a TFT display with video RAM

• sketching a custom keyboard with controller

• realization the Von Neumann architecture on the Harvard architecture of
the microcontroller

1 This restriction will be discussed in section 3.1 “Concept and basic setup“, subsection “Hardware limitations“ (p. 30).
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• implementation of different memory accesses (RAM, ROM, I/O)

• software loading possibility (for programs written for the Apple ][)

• buildup as a mobile handheld system

• documentation of the result

Those requirements are evaluated in detail on the end of this work with the gathered
results in chapter 5 “Conclusion & Outlook“ (p. 80).

1.1 Related work
After an advanced research, only two other projects could be found, which rebuild the
Apple ][ computer system – or parts of it – on an microcontroller, especially an AVR mi-
crocontroller (which will be used later on). Both were implemented at the Cornell Uni-
versity (Ithaca, NY, United States of America) during the course “ECE 4760: Designing
with Microcontrollers” [6].

In the year 2007, three students from Cornell  University tried to develop a system,
which is able to emulate the Apple ][ computer on an Atmel AVR ATMega32 microcon-
troller, in a practicum [7]. Because of the fact that they had not enough time to fnish
their project and had some issues with the memory subsystem, only a working MOS
6502 microprocessor emulator, a memory subsystem and a partial GPU (graphic pro-
cessing unit) was created by them without reaching the desired Apple ][ emulator sys-
tem. The difference to this thesis is not only the fact that this thesis creates a running
device, but also that this thesis creates a fully self-contained Apple ][ emulator with
less hardware components and equipped with a display to be portable.

Later on, in the year 2009, another team of two students tried to create an emulation
of the NES (Nintendo Entertainment System) [8]. Despite the fact that this project was
not led to the target of a complete NES emulation, which is hardly at the upper end of
the possibilities of the Atmel AVR microcontroller due to the complex PPU, this project
shares only the MOS 6502 processor emulation with this project.

Other MOS 6502 microprocessor emulations, based on an AVR microcontroller, are
available on the world wide web  [9] (only  one example page). The most MOS 6502
microprocessor emulations found on the web are written in C or C with inline assem-
bler and not highly optimized which will turn out as a key factor later on. Because of
this fact, using an existing 6502 microprocessor emulator is not an option.

During further research, it turned out that – to the knowledge of the author – nobody
had ever tried the target of this project: to create a portable Apple ][ emulator hand-
held device. The shown other projects did not reach their target and result in an un-
usable emulator device. So the results might only be used for initial design but not for
real implementation purposes.

Furthermore there is no indicator that anybody has created an Apple ][ computer sys-
tem emulator combining a custom keyboard, display, batteries and the microcontroller
in one single device that can be carried around in a pocket. And this is exactly the
desired result of this thesis. Due to this fact, the proposed solution of this thesis is a
premiere.
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1.2 Structure
This thesis features the entire way of producing a fnal product, which would be done
by companies: from the idea over frst thoughts to the software development and f-
nally  the  implementation  of  a  working  prototype.  The  document  is  structured  as
follows.

First of all  the structure and details of the Apple ][ computer system and the MOS
Technology 6502 microprocessor are explained in chapter  2 (p.  11). Due to the fact
that one needs to know all the details of the microprocessor or Apple ][ system to
emulate it, those are deeply covered. Then the implementation of the emulator soft-
ware is described in chapter 3 (p. 29). Thereby some frst considerations for the hard-
ware  of  the  resulting  device  are  made,  since  the  software  implementation  of  the
emulator is limited by hardware details of the used microcontroller. This chapter not
only  describes  the  implementation  of  the  6502  microprocessor  emulation,  it  also
describes other parts of the emulator like rendering an Apple ][ screen to the attached
display and the idea of an emulator runtime environment which manages the emu-
lator. In chapter 4 (p. 64) the software implementation is supplemented by hardware
implementation  details,  forming  the  aimed  portable  handheld  Apple  ][  emulator
(chapter 4.4 “The prototype“, p. 77). Finally, this thesis is closed with a conclusion of the
achieved targets: it takes an outlook to new features which might be implemented to
advance the resulting handheld device in chapter 5 (p. 80).

1.3 Legal thoughts
Emulating a system opens the question of legitimacy. In this particular case, there is no
reason for concern. To the knowledge of the author, the MOS 6502 was not patented
itself but some features were, like the on-the-fy correction of binary adding results
which was registered on the 16th september 1975 [10] (US patent: US 3991307 A). Since
this patent lasts up to 20 years and MOS Technologies no longer exists, there is most
likely no active copyright left [11]. One should also not overlook that this work has ex-
clusively an educational purpose.

Furthermore the software and operating system of the Apple ][ is the critical compo-
nent, since this parts are copyrighted by Apple Inc. and others. A usage of this software
might not be allowed. But since a marvellous “donation” from Apple Inc. to the Com-
puter History Museum in Mountain View (CA, United States of America) the source
code was made available for non-commercial use at the end of 2013:

With thanks to Paul Laughton, in collaboration with Dr. Bruce Damer, founder and
curator of the DigiBarn Computer Museum, and with the permission of Apple Inc.,
we are pleased to make available the 1978 source code of Apple II DOS for non-
commercial  use.  This  material  is  Copyright  © 1978 Apple  Inc.,  and may not  be
reproduced without permission from Apple [12].

The downloads contain various documents related to the Apple ][ development and
the source code for the Apple ][ DOS and BASIC.

(Thanks, Apple!)
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1.4 Terminology
To prevent misunderstandings and irritations some terms, symbols and spellings are
expounded in the following:

• if furthermore memory sizes are meant, “K” is an abbreviation for “kilobyte”. So
the term “8K” stands for 8 kilobyte of data (8.192 byte).

• strings starting with “0x” indicate a hexadecimal number. Strings starting with
“0b” indicate a binary number. An asterisk “*” in a binary or hexadecimal num-
ber  indicates  a  placeholder for  any  value of  this  number system, e.g.  0xf*
stands for numbers from 0xf0 to 0xff. If there is no such notation, the num-
bers are noted in the standard decimal system to base ten.

• humans tend to start counting by one. On everything related to technical top-
ics, numbering starts by zero. This is the way, how numbering is handled in this
document. Be aware of the fact that ordinal numbers still start by one.

• all abbreviations or words with a “→” character in front have a short explana-
tion inside the glossary on page 86.

• a number in square brackets represents a literature reference, which can be
followed by a page number inside the referenced literature (p. 89). By example
the reference “[42] (p. 43)” references literature number 42. A following page
number points to the particular page  of the literature,  where the referenced
information can be found – in this example on page 43.
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Chapter 2: Essentials

This chapter reveals a detailed view of the Apple ][ computer system featuring especially the
CPU as an important component for the emulation. Understanding the structure and be-
haviour of the CPU is fundamental for the following chapters of this thesis so all important
facts are explained here. The historical context is described very shortly – see referenced
literature for more historical details.

2.1 The Apple ][
After  a  successful  presentation of  the  Apple I  computer,  which  was  built  by  Steve
Wozniak and published together with Steve Jobs in April 1976, the series was continu-
ed. Finally in April 1977 the Apple ][ was published [13] (p. 20). Together with two other
home computer devices, it was the frst computer system which came fully assembled.
It was sold from 1977 to 1993, around 16 years, two million times [13].

Figure 1: Apple ][ computer with
monitor at the Museum Of The

Moving Image in New York City2.

During the 16 years of production, the system was extended multiple times. Initially
the Apple ][ “original” was released in 1977 with the Apple Integer BASIC, written by
Steve Wozniak in around six weeks, missing foating point arithmetics due to time con-
straints  [13]. After that the Apple ][+ was published in 1979 with an Applesoft BASIC,
written by Microsoft and including the desired foating point arithmetics [12]. Also the
Disk ][ – the foppy disk drive – was integrated by the software, so that the system
could automatically boot during startup from an inserted foppy disk. In the year 1983,
the Apple //e was launched. It contained a more sophisticated graphic output, could be
extended from 64K to 128K and the input of lower case characters was possible [13]
(p. 41). Around the release date of this model, the Apple ][c and Apple ][c+ were re-
leased in 1984. It was a compact version of the Apple //e with a weight of around 4 kg

2 Image source: Marcin Wichary, CC BY 2.0, recorded on 30th december 2007, accessed on 6th june 2014, 
http://www.fickr.com/photos/mwichary/2151368358/.
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[13] (p.  49).  In 1986,  the Apple IIGS was the fnal  successor of  the Apple ][  series,
completing  this  successful  computer  series  [13] (p.  57).  The  Apple  IIGS  disposed
extended  graphics  and  sound  capabilities  with  the  possibility  of  running  original
programs for the Apple ][ on the one hand and the graphical user interface of the
Apple Macintosh series, which was started in 1984, on the other hand [13] (p. 47). The
major difference to the Apple Macintosh was the fact, that the Apple IIGS provided a
colored output instead of the black-and-white output of the Apple Macintosh com-
puter until this date [13]. This last Apple ][ model was moreover the last model which
was designed under assistance of Steve Wozniak, who stopped his active membership
as a developer for Apple in february 1985 [13] (p. 51).

2.1.1 MOS Technology 6502
The main part of the Apple ][ computer is the 6502 microprocessor, designed by Chuck
Peddle and Bill Mensch at MOS Technology [14]. As the market and interests on micro-
processors  started in the 70th,  Intel  and Motorola as leading companies developed
their own microprocessors like the Intel 8080 or the Motorola 6800. All these micro-
processors were full featured 8 bit machines with a wide variety of use. The prices for
one of these new microprocessors were fairly high, based at around $300 for the Intel
8080 with some support chips [14].

When the 6502 was introduced, in 1975, it cost about one-sixth of the other models,
available on the market. So it became the least expensive but full-featured 8 bit micro-
processor one can buy these days  [14].  So the 6502 was a little revolution for the
microprocessor market. This was the key fact which improved the popularity of the
6502 very fast.

Technical overview

In order to get an overview over the technical features of the MOS 6502 microproces-
sor, bellow some important data are listed [15]: 

• single +5V power supply in difference to the Intel 8080 with –5V, +5V and +12V
power supply [16]

• 8 bit parallel processing with 56 instructions and basic support for pipelining

• 13 addressing modes, available for nearly all instructions

• hardware based decimal and binary arithmetics

• addressable memory up to 65K

• clock frequency between 1MHz and 2 MHz

• between two and seven machine cycles per instruction

• between one and three bytes instruction length

• →little endian byte encoding

• three hardware interrupts and one software interrupt

• register fles:
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◦ Accumulator (8 bit)

◦ X, Y as 8 bit index registers; used for addressing

◦ PC as 16 bit program counter

◦ SP as 16 bit stack pointer with the most signifcant byte hard wired to 0x01,
so that the stack is 256 byte wide from 0x01ff to 0x0100 

◦ P as processor status register

Some important parts of the processor will be covered by the following sections in de-
tail.

Memory map

The MOS 6502 processor is able of addressing 64K bytes of memory. The processor
stack, interrupt vectors and the zero page are placed at determined locations [15] [17]:

• 0x0000 – 0x00ff:  zero page. The frst 256 bytes of memory are called “zero
page”. These locations are used to speed up programs. As a normal addressing
mode would take two bytes as instruction operands to address the whole 64K
memory, it takes also many clock cycles. Using zero page addressing it is pos-
sible to speed up programs [17] (p. 61). By placing absolute addresses or even
values in this frst memory page, instructions only need to fetch one argument.
Therefor the execution can be done faster. All other addressing modes will be
covered later in section “Addressing modes“ (p. 14).

• 0x0100 – 0x01ff: stack. The processor stack is placed on the second memory
page. This results  in 256 bytes of stack size, which grows from the greatest
memory location (0x01fff) down to the lowest and wraps around to the top if
it overfows.

• 0xfffa – 0xffff: interrupt vectors. These six memory locations form three
16 bit pointers into the memory. If an interrupt occurs the new program count-
er will be fetched from one of these locations (see p. 16)

While the zero page and interrupt vectors are intended to be overwritten and used by
the application, the stack needs to be untouched for a proper code execution.

Processor status register

The status register contains seven single bit fags which are set or cleared when the
instruction is executed. The following table explains the fags [15] [17]:

Bit Flag Description

0 C Is set if the last instruction resulted in an over-
fow. It is used to perform addition and sub-
traction with more than one byte.

1 Z Set if the last result was zero or equal.

2 I If set the system will not respond to the IRQ in-
terrupts. (The NMI cannot be masked out.)

3 D If set the operations ADC and SBC will be set to 

– 13 –



Chapter 2: Essentials

Bit Flag Description

decimal mode, working with binary coded de-
cimals (→BCD).

4 B Indicates that the BRK instruction was exe-
cuted. This fag cannot be changed program-
matically.

5 1 Unused fag for later expansion. Mostly set to 
logical high level [15] [17].

6 V Is used to indicate whether the result can be 
expressed in 7 bits with a sign bit.

7 N Negative fag, indicating whether bit 7 of the 
result is set or not

Table 1: detailed description of the 6502 status register [15].

The fags are set by instructions and some fags can be directly set or cleared by the
program. They are used directly for branch instructions and infuence indirectly the
executed arithmetic and logic instructions.

Addressing modes

The 6502 supports thirteen different addressing modes. Not each of the 56 instruc-
tions can be used with all these addressing modes, so that 151 valid opcodes are the
result. The following table explains all addressing modes [17]:

Mode (abbr.) Description Example

Accumulator
(accu)

1 byte

The value of the accumulator regis-
ter will be used as operand.

LDA #$15
ASL A
The accumulator register will contain the 
value 0x2a and the carry flag is cleared.

Implied
(impl)

1 byte

The instruction needs no value to op-
erate with or on; e.g. the status re-
gister is used.

CLC
The carry flag is cleared.

Relative
(rel)

2 byte

Only used with branch instructions:
the 2nd byte is the branch displace-
ment, ranging from -128 to 127. The 
decision of branching is made upon 
the state of the intended the status 
register fag.

infinite_loop_1:
  LDA #$0
  BEQ infinite_loop_1
If zero is loaded the zero flag is set. A Branch 
will be executed.

Immediate
(imm)

2 byte

The operand is located in the 2nd byte 
of the instruction.

LDA #$42
AND #$2a
The accumulator register will contain the 
value 0x02.
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Mode (abbr.) Description Example

Indexed
Indirect
(indX)

2 byte

The sum of the second byte and the 
value of the X register point to a 
memory location in the zero page 
where a 16 bit address is located, 
which points to the fnal location. 
Wraparound is used to stay inside 
the zero page.

The value of the accumulator will be stored 
to 0x3230 (0x81 0x03 = STA ($03,X)).

Indirect
Indexed
(indY)

2 byte

The second byte points into the zero 
page where a 16 bit pointer is 
located. The sum of the 16 bit 
pointer and the value of the Y 
register point to the intended 
memory location. The value of the accumulator will be stored 

to 0x3230 (0x91 0x04 = STA (0x04),Y).

Zero Page
(zp)

2 byte

Allows working with an operand in 
the zero page by only specifying the 
lower byte of the memory location 
pointer. The upper byte is 0x00. This 
saves one instruction operand and 
also execution cycles.

 
After execution 0x0015 contains 0x2a 
(0xe6 0x15 = INC $15).

Zero Page X
(zpX)

2 byte

Points to a memory value inside the 
zero page. The pointer is the sum of 
the second instruction byte and the X 
register.
The sum wraps around at 0x00ff 
to remain in the zero page.

 
After execution 0x0015 contains 0x2a 
(0xe6 0x15 = INC $15, X).

Zero Page Y
(zpY)
2 byte

Same behaviour as Zero Page X 
addressing mode, but with Y register 
instead of X. Supported by: LDX & STX.

See Zero Page X with Y register.

Absolute
(abs)

3 byte

The second and third byte specify an 
absolute memory address, lower 
byte frst.
Thus, the complete 64K memory is 
addressable.

 
After execution 0x2a15 contains 0x42 
(0xee 0x15 0x2a = INC $2a15)

Absolute X
(absX)

3 byte

The second and third byte point to a 
memory location in the 64K memory. 
The fnal pointer consists of the sum 
of the 16 bit pointer and the value of 
the X register.  

After execution 0x2a15 contains 0x42 
(0xfe 0x11 0x2a = INC $2a15, X).

Absolute Y
(absY)
3 byte

Same behaviour as “Absolute X” 
addressing mode, but with the Y 
register instead of X.

See Absolute X with Y register.
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Mode (abbr.) Description Example

Absolute
Indirect
(ind)

3 byte

The two instruction operands point 
to an address in memory where an 
other 16 bit pointer is located, which 
points to the intended memory 
location.
This mode is only supported by JMP.

After execution the PC points to 0x3433 
(0x6c = JMP).

Table 2: detailed explanation of all different addressing modes supported by the MOS 6502 microprocessor.

Please note that the explanations in table 2 assume that an instruction consists at least
of one byte, the instruction opcode itself. The following two operands or arguments
are optional.

Instruction overview

Table  3 (p.  17) gives a simple outline of all the instruction opcodes available on the
MOS 6502 microprocessor along with their specifcations (addressing mode, length in
byte, cycle count).

In every cell of the table the mnemonic of the instruction is displayed, followed by the
addressing mode from table  2 and fnally followed by the instruction length in bytes
and the number of cycles this instruction takes. Empty felds are “illegal” opcodes.

As indicated by the asterisks, there are special rules for the number of cycles, which
are taken by specifc instructions:

* all cycle times labeled with a single asterisk take one more clock cycle if a
page boundary in memory is crossed. This means if the fnal composed
memory address crosses a page boundary, e.g. low byte on  0x2aff and
high byte on 0x2b00, the additional cycle is added. 

** (only branch instructions) since a branch has several possibilities to per-
form, there are different cycle consumptions: a branch not taken requires
the standard two cycles. If the branch is taken, it requires three clock cy-
cles. And if it is taken and crosses a page boundary, it requires four cycles.

The remaining 105 instructions – represented by an empty cell in table 3 – are not ex-
plained in this document but they have some function, indeed. The problem here is
that they are “illegal”. The manufacturer has not given any sense to this instructions
and also not tied them to something like a “no operation”. Instead they all do some
fancy things on a real MOS 6502 microprocessor. Some illegal  instructions perform
stable operations, like a double  NOP. Others have an unpredictable behaviour, which
can freeze the microprocessor. Hobbyist carried out tables of illegal instructions that
seem to perform stable actions. Despite this, they are not covered in the ofcial docu-
ments and also not in this document.

Interrupts

The interrupt feature is used to let the processor suspend the current sequential exe-
cution and jump to another code fragment. This interrupt event can be triggered by
hardware and software and needs immediate attention. By example a keyboard input,
which needs to be processed.
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0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f

0x00 BRK
(impl)
1 / 7

ORA
(indX)
2 / 6

ORA
(zp)
2 / 3

ASL
(zp)
2 / 5

PHP
(impl)
1 / 3

ORA
(imm)
2 / 2

ASL
(accu)
1 / 2

ORA
(abs)
3 / 4

ASL
(abs)
3 / 6

0x10 BPL
(rel)
2 /
2**

ORA
(indY)
2 / 5*

ORA
(zpX)
2 / 4

ASL
(zpX)
2 / 6

CLC
(impl)
1 / 2

ORA
(absY)
3 / 4*

ORA
(absX)
3 / 4*

ASL
(absX)
3 / 7

0x20 JSR
(abs)
3 / 6

AND
(indX)
2 / 6

BIT
(zp)
2 / 3

AND
(zp)
2 / 3

ROL
(zp)
2 / 5

PLP
(impl)
1 / 4

AND
(imm)
2 / 2

ROL
(accu)
1 / 2

BIT
(abs)
3 / 4

AND
(abs)
3 / 4

ROL
(abs)
3 / 6

0x30 BMI
(rel)
2 /
2**

AND
(indY)
2 / 5*

AND
(zpX)
2 / 4

ROL
(zpX)
2 / 6

SEC
(impl)
1 / 2

AND
(absY)
3 / 4*

AND
(absX)
3 / 4*

ROL
(absX)
3 / 7

0x40 RTI
(impl)
1 / 6

EOR
(indX)
2 / 6

EOR
(zp)
2 / 3

LSR
(zp)
2 / 5

PHA
(impl)
1 / 3

EOR
(imm)
2 / 2

LSR
(accu)
1 / 2

JMP
(abs)
3 / 3

EOR
(abs)
3 / 4

LSR
(abs)
3 / 6

0x50 BVC
(rel)
2 /
2**

EOR
(indY)
2 / 5*

EOR
(zpX)
2 / 4

LSR
(zpX)
2 / 6

CLI
(impl)
1 / 2

EOR
(absY)
3 / 4*

EOR
(absX)
3 / 4*

LSR
(absX)
3 / 7

0x60 RTS
(impl)
1 / 6

ADC
(indX)
2 / 6

ADC
(zp)
2 / 3

ROR
(zp)
2 / 5

PLA
(impl)
1 / 4

ADC
(imm)
2 / 2

ROR
(accu)
1 / 2

JMP
(ind)
3 / 5

ADC
(abs)
3 / 4

ROR
(abs)
3 / 6

0x70 BVS
(rel)
2 /
2**

ADC
(indY)
2 / 5*

ADC
(zpX)
2 / 4

ROR
(zpX)
2 / 6

SEI
(impl)
1 / 2

ADC
(absY)
3 / 4*

ADC
(absX)
3 / 4*

ROR
(absX)
3 / 7

0x80 STA
(indX)
2 / 6

STY
(zp)
2 / 3

STA
(zp)
2 / 3

STX
(zp)
2 / 3

DEY
(impl)
1 / 2

TXA
(impl)
1 / 2

STY
(abs)
3 / 4

STA
(abs)
3 / 4

STX
(abs)
3 / 4

0x90 BCC
(rel)
2 /
2**

STA
(indY)
2 / 6

STY
(zpX)
2 / 4

STA
(zpX)
2 / 4

STX
(zpY)
2 / 4

TYA
(impl)
1 / 2

STA
(absY)
3 / 5

TXS
(impl)
1 / 2

STA
(absX)
3 / 5

0xa0 LDY
(imm)
2 / 2

LDA
(indX)
2 / 6

LDX
(imm)
2 / 2

LDY
(zp)
2 / 3

LDA
(zp)
2 / 3

LDX
(zp)
2 / 3

TAY
(impl)
1 / 2

LDA
(imm)
2 / 2

TAX
(impl)
1 / 2

LDY
(abs)
3 / 4

LDA
(abs)
3 / 4

LDX
(abs)
3 / 4

0xb0 BCS
(rel)
2 /
2**

LDA
(indY)
2 / 5*

LDY
(zpX)
2 / 4

LDA
(zpX)
2 / 4

LDX
(zpY)
2 / 4

CLV
(impl)
1 / 2

LDA
(absY)
3 / 4*

TSX
(impl)
1 / 2

LDY
(absX)
3 / 4*

LDA
(absX)
3 / 4*

LDX
(absY)
3 / 4+

0xc0 CPY
(imm)
2 / 2

CMP
(indX)
2 / 6

CPY
(zp)
2 / 3

CMP
(zp)
2 / 3

DEC
(zp)
2 / 5

INY
(impl)
1 / 2

CMP
(imm)
2 / 2

DEX
(impl)
1 / 2

CPY
(abs)
3 / 4

CMP
(abs)
3 / 4

DEC
(abs)
3 / 6

0xd0 BNE
(rel)
2 /
2**

CMP
(indY)
2 / 5*

CMP
(zpX)
2 / 4

DEC
(zpX)
2 / 6

CLD
(impl)
1 / 2

CMP
(absY)
3 / 4*

CMP
(absX)
3 / 4*

DEC
(absX)
3 / 7

0xe0 CPX
(imm)
2 / 2

SBC
(indX)
2 / 6

CPX
(zp)
2 / 3

SBC
(zp)
2 / 3

INC
(zp)
2 / 5

INX
(impl)
1 / 2

SBC
(imm)
2 / 2

NOP
(impl)
1 / 2

CPX
(abs)
3 / 4

SBC
(abs)
3 / 4

INC
(abs)
3 / 6

0xf0 BEQ
(rel)
2 /
2**

SBC
(indY)
2 / 5*

SBC
(zpX)
2 / 4

INC
(zpX)
2 / 6

SED
(impl)
1 / 2

SBC
(absY)
3 / 4*

SBC
(absX)
3 / 4*

INC
(absX)
3 / 7

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f

Table 3: outline of the complete instruction set of the MOS 6502 microprocessor.
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The 6502 microprocessor has hardware and software interrupt features. If such an in-
terrupt occurs the new program counter will be loaded from a “vector” address. Those
are two memory locations forming a 16 bit memory value to address the complete 64K
memory. It supports the following interrupts [15] [17]:

• IRQ: this maskable interrupt is hardware generated by a level change on the
IRQ pin [18]. If the current instruction is executed, the processor will load the
new program counter  from the locations  0xfffe and  0xffff and continue
execution from there. If the “I” fag in the status register is set, the interrupt will
be ignored. Also the two bytes of the program counter and the current proces-
sor status register are pushed onto the stack.

• BRK: is the same as an IRQ with the difference that it is triggered by software
by the BRK instruction. In this case also the “B” fag in the status register will be
set by this interrupt. This pushes also the two bytes of the program counter
and the processor status register onto the stack. It is intended to use for debug
purposes or as →system call feature.

• NMI: this is called the “non-maskable interrupt”, because it cannot be masked
out and occurs every time triggered. It is also triggered by the hardware NMI
pin, when it changes from high to low [18]. Then the processor loads the new
program counter from 0xfffa and 0xfffb. This pushes also the two bytes of
the program counter and the processor status register onto the stack.

• RESET: also an hardware interrupt, triggered by the RESET pin. This interrupt
resets the stack pointer to  0xfd3 and loads the new program counter from
0xfffc and 0xfffd.

As the NMI interrupt cannot be turned of, it can interrupt a normal IRQ or BRK inter-
rupt. This kind of interrupt was created for external devices that cannot even wait until
the interrupt execution is fnished, e.g. HSYNC or VSYNC of a →CRT signal, which needs
very proper timing. 

The RESET interrupt is the strongest interrupt, causing the CPU to continue execution
on the fetched address from the RESET vector. It resets the stack, so that one cannot
return to the previous execution location by RTI.

Issues on the 6502 and further decisions

The fact  that  the  MOS 6502 microprocessor  is  running until  now in many devices
properly does not imply that its free of mistakes or issues. There are many issues fled.
Instead of listing all issues, only those which are important for this thesis are listed
here:

• illegal  opcodes:  as  mentioned  before,  the  unused  opcodes  are  not  tied  to
something  “neutral”  in  the  original  MOS 6502 microprocessor  variant  (later
variants  solved  this  issue).  Because  of  the  fact  that  most  of  them  are  un-
documented and uncontrollable, the following decision is made: only the by the

3 The SP gets reset to 0xfd, because the 6502 injects a BRK instruction on RESET. While executing the BRK instruction it writes
the two PC bytes and the processor status register onto the stack. In case of RESET the actual data is not needed so the
control lines change to read while  BRK tries to write onto the stack and no data is written onto the stack. Only the stack
pointer decremented by three from 0xff [19] [20].
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manual [17] and datasheet [15] specified and legal set of instructions is covered by
this thesis (as seen in table 3).

• “trouble” with JMP: the JMP instruction in indirect addressing mode has a bug. If
the lower byte of the new program counter is on the last location of a page (e.g.
0x00ff), the next location is not the frst location of the new page (e.g. 0x0100),
the 6502 takes the frst location of the current page (e.g. 0x0001) instead of the
new page. This “mistake” will be considered in the emulator implementation.

2.1.2 Memory organisation
After explaining the key component – the 6502 microprocessor – one can move on
with the Apple ][ system. Due to the fact that the processor can address 64K of mem-
ory, the Apple ][ could use up to 64K memory. The memory is further divided into two
sections:

• the read and write section for user program space, from  0x0000 to  0xbfff.
This are 48K of total memory available to the user (including the zero page and
stack). 

• a section for memory mapped I/O and expansion ROM from 0xc000 to 0xcfff.

• the read only section stored in ROM modules from  0xd000 to  0xffff. These
12K bytes of memory are reserved for the monitor program and the Integer
BASIC. The monitor program is a masterful program [21] (p. 40) that provides
“system call”  functions and controls the programs.  The Integer BASIC is  the
“operating system” for the user providing a BASIC command line.

The following table 4 takes a detailed view on the memory showing a total overview in
a graphical notation.

Page(s) Size in
bytes

Intended function by the Apple ][

0x00 256 Zero page for 6502 microprocessor (acceleration)

0x01 256 6502 microprocessor stack

0x02 256 GETLN input buffer (Monitor program / BASIC)

0x03 256 Other monitor vector locations

0x04 … 0x07 1,024 Primary “page” for text and low resolution (LoRes) 
graphics (see “LoRes graphics mode“, p. 23)

0x08 … 0x0b 1,024 Secondary page for text and LoRes 
graphics (double-buffer)

0x0c … 0x1f 5,120

0x20 … 0x3f 8,192 Primary page for high resolution 
(HiRes) graphics (see “HiRes graphics 
mode“, p. 23)

Free to use

0x40 … 0x5f 8,192 Secondary page for HiRes graphics 
(double-buffer)

0x60 … 0xbf 24,576
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Page(s) Size in
bytes

Intended function by the Apple ][

0xc0 … 0xcf 4,096 Memory mapped I/O (no physical memory at all):
• important I/O locations at the beginning 

(e.g. graphics mode)
• peripheral card I/O space
• peripheral card ROM space
• expansion ROM

0xd0 … 0xf7 10,240 BASIC language interpreter

ROM0xf8 … 0xff 2,048 Monitor program (inc. 6502 inter-
rupt vectors)

65,536 # of total memory locations

Table 4: Apple ][ memory map, all 256 pages and their function (if any) [21] (p. 69).

The pages 0xc0 to 0xcf perform an important action: the memory mapped I/O. That
means that this memory locations have no physical memory at all.  Instead, the ad-
dress on the address bus is used to trigger some kind of action. Mostly these locations
are read and the result is an undefned value which is discarded, because referencing
the specifc memory location has performed the desired hardware action (e.g. beep
with the speaker).

The memory mapped I/O section plays an important role. The following table outlines
the general structure of this memory region:

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0xc000 Keyboard data (see “2.1.4 The keyboard“, p. 24)

0xc010 Keyboard clear (see “2.1.4 The keyboard“, p. 24)

0xc020 Cassette output toggle

0xc030 Speaker toggle

0xc040 Utility strobe

0xc050 gr tx no mix pri sec lore hire an0 an1 an2 an3

0xc060 Game controller input, cassette input 0xc060 – 0xc067 mirrored

0xc070 Game controller strobe

Table 5: important built-in I/O locations [21] (p. 79).

As one can see, these locations manage important I/O functions like the keyboard in-
put or (sound) speaker output and other I/O related stuff. The 16 memory locations,
beginning at 0xc050, manage the graphic output of the entire Apple ][. The abbrevia-
tions have the following meanings:

• “gr” and “tx” stand for “graphics mode” and “text mode” and toggle between
fullscreen graphics and fullscreen character display.

• “no” and “mix” decide whether the screen is “not mixed” or “mixed”. In mixed
mode together  with  graphics  mode,  the Apple  ][  displays  four  lines  of  text
mode on the lower section of the screen (e.g. to see graphics while entering
BASIC commands).
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• “pri” and “sec” decide which location for video data in memory is used – the
primary or the secondary. This can be used for frame double-buffering.

• “lore” and “hire” distinguish between the low resolution mode and high resolu-
tion mode.

• “an0” to “an3” are called “annunciator ports”. These are simply digital output
lines  which  can be  turned  off by  referencing  the lower address  and on by
referencing  the higher  address.  This  feature  is  useful  to  communicate  to  a
serial device or something else.

Furthermore there is a difference between this memory locations. They are either a
“toggle switch” or a “soft switch”.

These toggle switches are internally fip-fops. Each time a read occurs the fip fop will
change its state to the opposite (logical low or high). By reading this memory location
the fip fow will be toggled. By writing to this location, the fip fop will be toggled twice
and is fnally in the same state as it was before. An example of a toggle switch is the
speaker output. By reading the location it will “click”. Performing this action faster and
cyclic, a tone might be generated [21] (p. 20, p. 79).

Soft switches on the other hand are as simple as light switches with two states: every
state has a memory location. If this location is invoked by a read or write4, the switch is
thrown to this state  [21] (p. 79). The video mode selection or annunciator ports are
made out of soft switches: if a read occurs on 0xc050, the Apple ][ output is forced to
fullscreen graphics output. If 0xc051 is referenced, the Apple ][ is forced to fullscreen
text output.

The Apple ][ had also eight extension card slots and the possibility to map their I/O re-
gisters and ROM code into the main memory (table 4). This enabled the frst Apple ][ to
use a disk drive although it was not yet invented when it was released. The disk drive
came with an extension card,  which was inserted in one of these slots.  The driver
frmware was mapped into the main memory place for peripheral cards ROM5 and the
user was able to work with the disk drive. As important and interesting these features
might be they are not covered deeper on this thesis, because they aren't implemented yet.
An implementation would go beyond the scope of this thesis.

As seen before, the user could work with their programs in a maximum of 48K bytes of
memory. In those early days this “huge” amount of memory was very expensive. So the
original Apple ][ was shipped containing 4K bytes of user memory  [21] (p.  71). The
motherboard contained 24 + 1 sockets for →DIP RAM modules. The 24 sockets are
split into tree “banks” or rows of eight sockets holding a static RAM →IC and forming a
byte, because a static RAM →IC stored only bits, not bytes. The last socket was flled
with jumpers to place the memory of the eight sockets inside the main memory at the
right location. Every group of eight slots needs to contain the same memory modules,
if used, to work properly [21] (p. 71).

With this fexible system and RAM modules available in 4 and 16 Kbit6, there are nine

4 E.g. by using an assembler instruction onto this memory location, which will read it or write to it.
5 From 0xc100 to  0xc7ff every peripheral card slot has 256 byte PROM (program ROM, e.g. the “driver”) space and a card

could request 2K expansion ROM from 0xc800 to 0xcfff [21].
6 A module of 4 Kbit memory contains 4.096 distinct memory locations of one bit length (not one byte!). This is the reason, why

they are grouped by eight: eight of these modules form a byte of data in the memory.
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valid memory combinations: 4K, 8K, 12K, 16K, 20K, 24K, 32K, 36K and 48K [21] (p. 71).
Inserting  the  RAM modules  into  the  24  sockets  and  setting  the  jumpers  correctly
enabled the user to extend the memory later on, since memory ICs were expensive in
those days.

2.1.3 Video output
As described,  the video RAM is mapped into the memory and it  supports different
types of video output:

1. text mode – the screen is flled with 960 characters.

2. low resolution (LoRes) graphics mode – the screen is flled with 1.920 colored
blocks. Every block can have one of 16 colors of the Apple ][ color palette.

3. high resolution (HiRes) graphics mode – the screen can display a 280 by 192
pixels wide image with 53.760 distinct dots. Every dot could possibly have one
color out of six. But there are some special rules restricting this.

4. mixed mode – in this mode one of the graphics modes is enabled and the
lower four lines of the screen are set to text mode, e.g. showing the BASIC com-
mand line.

Text mode

In the text mode the screen is flled with characters in 40 columns over 24 rows. Every
character  represents one memory value at  the LoRes graphics  memory page from
0x0400 – 0x7fff (or 0x800 – 0x0bff if secondary page selected). 

A character consists of a 5 x 7 dot graphics with an one dot wide space on the left and
the right and an one dot high line above every character to separate the lines. So every
character is 7 x 8 dots in size. The character set consists of 64 characters:

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 @ A B C D E F G H I J K L M N O
0x1 P Q R S T U V W X Y Z [ \ ] ^ _
0x2  ! “ # $ % & ' ( ) * + , - . /
0x3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

Table 6: the Apple ][ character set [22] (figure 8.4, chapter 8).

Each character has one byte of data and so it can represent 256 distinct symbols. The
character  set  with  its  64  characters  is  repeated four  times inside this  256 distinct
symbols. This enables different kinds of displays for every character set block:

• 0x00 –  0x3f (0b00******):  the characters are displayed inverse (black char-
acters on white background)

• 0x40 – 0x7f (0b01******): the characters are fashing. They are changing fast
from inverse to normal display.

• 0x80 – 0xbf (0b10******): normal character display (white on black).

• 0xc0 – 0xff (0b11******): repetition of the previous block.
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The memory layout on the display page is quite complex and fragmented – the charac-
ter rows have free memory locations as spacers.  In order to stay in the scope of this
document, this is not covered detailed. More information can be found at [21] (p. 18, fig. 2).

LoRes graphics mode

In the low resolution mode the screen is flled with 1,920 colored blocks, each is 7 x 4
pixels in size. This leads to a resolution of 40 x 48 blocks. Every block can have one of
16 colors.

It is easy to see that every text character consists of two blocks. So the lower →nibble
of the character is responsible for the upper block and the upper nibble for the lower
block. These two nibbles form the corresponding character byte. Because of this fact
the memory and memory layout  for  the text  mode can  be  used to  display  LoRes
graphics, with only changing the interpretation of the values by toggling the soft-switch
in 0xc050.

HiRes graphics mode

The high resolution mode enables the user to display a 280 by 192 dots wide “image”
with 53,760 distinct dots. Every dot can have theoretically one color of black, white, vio-
let,  green, red and blue.  The two memory pages for primary and secondary HiRes
graphics are both 8K long and located as shown in table 4 (p.  20). If the Apple ][ has
less than 16K memory, this graphic mode cannot be used because of missing memory.

The coloring of the dots is fxed by their position on the screen. The background or the
unset dots are always colored in black. Each bit of a byte in the memory represents
one dot. The eight bit is not displayed, but used to switch between the colors for the
dots. Every line of dots is drawn from left to right going through the bytes from the
frst (least signifcant) bit to the seventh bit  [21] (p. 19). On black-and-white monitors
every set bit is displayed white, otherwise it is displayed in the background color black.
The “rules” for coloring are [21] (p. 19):

1. If the dot is not set, it is displayed black.

2. If the dot is set and in an even numbered dot column (0, 2, 4, 6, …, 278), it is dis-
played in the color violet.

3. If the dot is set and in an odd numbered dot column (1, 3, 5, …, 279), it is dis-
played in the color green.

4. If two dots are placed side-by-side, both are displayed white.

5. If bit seven of the byte is turned on, the colors violet/green are replaced by the
colors blue/red.
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Figure 2: color pallet of the Apple ][ low resolution graphics mode [23].
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2.1.4 The keyboard
An other important component of the Apple ][ is its keyboard, which is built-in into the
enclosure. The specifcations of the keyboard are [21] (p. 6):

• 52-key typewriter-like keyboard, supporting only uppercase characters.

• supports up to two key pressed at the same time.

• a key produces only a key code when it is pressed down. During the key is held
down, no further key code is generated.

• special keys:

◦ CTRL, SHIFT: they generate no key codes by them self, but in combination
with other keys (e.g. “SHIFT + 1 = !” or “CTRL + G = BELL”).

◦ REPT: due to the fact that a pressed key only produces one character in-
dependently from the time it is pressed, this key provides a multi keypress
feature. If  the REPT key is pressed alone, the last generated character is
reproduced once. If the REPT key is pressed together with an other key the
key is reproduced at about ten times per second [21] (p. 7). If one of the two
keys is released, the process is stopped.

◦ RESET: this key is directly connected to the the MOS 6502 microcontroller
RESET pin. If  this key is pressed, the RESET pin at  the microprocessor is
pulled to ground and goes high on release[15] (p.8). On this positive edge a
RESET hardware interrupt is triggered. See section “Interrupts“ (p.  16) for
details.

◦ ESC,  ←,  →:  keys  to  provide special  functions  like  an “ESCape”  action  or
moving the cursor.

• memory  mapped  I/O  locations  to  access  the  key  code  programmatically:
0xc00* (data), 0xc01* (clear)

If a key is pressed, the generated key code is placed in the memory location 0xc00*
and it is greater than 1287. The key code will remain there until another key is pressed
or it is cleared. By referencing the memory location 0xc01* the value in 0xc00* gets
subtracted by 128. Every value beneath 128 is assumed as no key code. But one can
still recover the last pressed key code by reading the value and adding 128 to it.

7 Bit seven is set in the Apple ][ character set in contrast to the →ASCII standard where the key code needs only the frst six bits.
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Figure 3: sketch of the Apple ][ original keyboard with all its 52 keys (the
power lamp at the lower left corner not included) [21] (p. 6).
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2.1.5 Other hardware features
There are a lot more hardware features of the Apple ][, which would go beyond the
scope of this document. So they will be summarized very shortly below:

• as mentioned before, the Apple ][ contains eight slots for extension cards. All
address lines and other important processor lines are available to this cards.
This enabled the Apple ][ to be extended later on. There are various hardware
extension “cards” available. Some examples are [21]:

◦ extension of the 40 by 24 text screen to 80 by 48 characters, with a card
providing more text memory and the needed frmware.

◦ extension of the Apple ][ by a disk drive: the extension card is connected to
the disk drive and provides the frmware to run it.

◦ or nowadays: connection of a →Raspberry Pi with an extension card adapt-
er to extend the Apple ][ memory or use other features provided by the
Raspberry Pi (HDMI output etc.) [24].

• the speaker is a simple 8Ω speaker, connected to the internal  electronics. A
reference of the memory location  0xc03* allows to change the voltage level
from low to high or vice versa and one can hear a click. Performing this action
with a correct timing and duration will produce a sound.

• The Apple ][ had three digital input pins and four analog input pins which could
be read by software as general purpose input. The four annunciator ports and
a utility strobe represent the general purpose output. The strobe is a simple
output which will  drop from +5V to 0V for 0.5 µs by referencing a memory
location (like the speaker) [21] (p. 20).

• The Apple ][ could also be interfaced by a simple analog game controller called
“paddle”. They input data into the system by using the plain analog and digital
input pins, which were available on the motherboard [21] (p. 24 and 78). 

• The Apple ][ original was designed to use a regular cassette and cassette re-
corder to store data permanently. For this it has two audio jacks: one for stor-
ing (microphone-in of the cassette recorder)  and the other for reading (ear-
phone-out of the cassette recorder). The system Monitor program provides all
frmware to save or to load from this medium binary data. In the I/O memory
two memory locations (0xc02* and 0xc060) are dedicated to control an elec-
tronic circuitry which interprets the “sound” input of a cassette or generates
“sound” output to store [21] (p. 22 and 79).

2.1.6 Software insights: System Monitor & BASIC
The system monitor is a masterful program providing “system call” functions and some
limited input prompt. The original Apple ][ started the System Monitor program after
power up. 

The Monitor prompt starts with an asterisk (“*”). From System Monitor one can get into
BASIC using the key stroke “CTRL + B” and “ENTER”. From BASIC one can get into the
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Monitor program by entering “CALL -151”. It provides an input prompt for advanced
programmers with actions like: examine, change, move and verify memory or a mini
assembler [25] (pp. 68). 

Using this “mini-assembler”, one is able to write MOS 6502 assembler programs in an
enhanced environment, which provides helping resources. There is also the possibility
to save the data to the cassette or read from a cassette. The entire system Monitor is
located in the upper 2K of ROM.

Beneath this 2K of System Monitor, there are 10K of ROM dedicated to the current
BASIC language: on the Apple ][ “original“ the Integer BASIC and the Applesoft BASIC
on the Apple ][ plus [21].

The Integer BASIC was written by Steve Wozniak in a very short amount of time. It
leaks foating point arithmetics but is quite faster than the Applesoft BASIC. One is
using the Integer BASIC, if the prompt character is an rightwards arrow (“>”). Because
of its speed beneft against the Applesoft BASIC it is more popular for games, because
games only need integer values [13] [12].

The Applesoft BASIC was written by Microsoft, because Steve Wozniak was occupied
with developing the Apple Disk ][ and the customers of the Apple ][ requested foating
point arithmetics [13] [12]. The Applesoft BASIC is slower than the Integer BASIC. One
can recognize that the current running BASIC is the Applesoft by looking at the prompt
character: it is a right square bracket (“]”).

2.2 Microcontrollers vs. Microprocessors
There are devices  called  “microprocessors”  (or  CPU or processor).  This  devices  are
multi purpose devices, open to compute in an infnite variety of different tasks. It ac-
cepts digital input data, processes it according to its instructions and outputs the result
[26]. With only a microprocessor, a computer is useless. There is the need for plenty of
peripheral devices like main memory (aka RAM), a hard disk, a graphics card, input
controllers, for keyboard and mouse devices, and other components to create an en-
vironment like a standard desktop personal computer (PC), which can feed program in -
structions and data into the microprocessor and use the result. All these components
together form a (modern) personal computer [26]. As seen before, the Apple ][ had all
theses modules, forming an – for this time – incredible computer (system).

In opposite to that, a microcontroller is a quite smaller device and does not need any
peripheral components. It consists of →SRAM, →Flash memory, →EEPROM memory
and a CPU. So it is an entire “personal computer” in a much smaller package, but also
with less performance in it.

The key  difference is,  that  the microcontroller  has  a  defned relationship  between
input and output and is programmed once with a software for a specifc task and then
build into an electrical circuit for this fxed task. Since it is responsible only for a very
specifc task, it does not need much computational power. This results in a small de-
vice with less peripherals and also less power consumption, whereby a microprocessor
can do a wide variety of different tasks, for example running different software on a
computer, but requires peripherals to interact [27].
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2.3 Different architectures
Beyond the difference of the technical specifcations and different purposes of micro-
controllers and microprocessors most microcontrollers make use of a different overall
system architecture. The two general architecture styles are explained in the following.

2.3.1 Von Neumann architecture
A normal personal computer, equipped with a microprocessor, is build upon the “Von
Neumann” system architecture, labeled after the mathematician and physicist John von
Neumann. He proposed that data and program instructions should retain both in the
same memory and processed by a processor with an ALU and registers – a micropro-
cessor [28].

This is a simple model for a computer, because it involves only one data bus, to trans-
fer program and data from RAM or secondary storage to the CPU and get the result
back into storage. It also enables the system to load data from a secondary storage
into memory and then treats it as program data. This kind of feature is used every time
a computer is started: it loads the operating system from hard drive and then executes
it. This kind of architecture allows further other enhancements like just-in-time op-
timization, where the instructions get optimized during runtime and slower code is re-
placed. All this features are only possible if data and program data reside in the same
memory [29].

The disadvantages of this architecture are that data memory regions could get exe-
cuted due to an error or malware program, which results in uncontrollable or undesir-
ed behaviour and maybe in data loss [29]. Another great disadvantage is known as the
“Von Neumann bottleneck”:  data  and program data are fetched through the  same
memory bus. So they cannot be fetched at the same time, which slows down the speed
of the CPU [28].

2.3.2 Harvard architecture
The counterpart is the Harvard architecture. In this architecture, the data memory is
strictly separated from the program memory. With the term “Harvard architecture” the
“modifed Harvard architecture” is meant [30] [31]. It softens the strict initial defnition
and allows to access the program memory to provide the possibility of loading pro-
gram data [31].
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Figure 4: sketch of the Von Neumann architecture. The
"Memory" stores data and programs and the CPU works

on this data.
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The main unique characteristics of this kind of architecture are the separated busses
for  data  and  program memory  and  separated  memory  modules  respectively.  This
feature solves the “Von Neumann bottleneck” and allows fetching data while fetching
program instructions at the same time [30]. This feature improves the throughput. It
also enhances the security, since there is no direct interconnection and it is harder to
execute program data.

There are not many microprocessors which are build upon Harvard architecture, due
to the fact that making it useable and writing programs for it is more complicated due
to the disjoint  busses.  Many  microcontrollers  are made upon this  architecture,  es-
pecially the Atmel AVR microcontroller series, which is used for implementation later
on in this thesis.

An Atmel AVR microcontroller comes with a CPU, a fash memory, an SRAM and an
EEPROM. The Flash memory stores the program data and is non-volatile. The SRAM
(volatile) is intended to store program data (variables, strings etc.) during runtime. The
EEPROM (non-volatile) is a slow secondary memory, separated from the fash memory
and dedicated to  permanent  data  storage.  So  there  are  existing  two independent
busses for data and program memory.

That this architecture follows the “modifed Harvard architecture” can be seen by the
fact that there are assembler instructions like “lpm” and “spm” to load and store data
into or from program memory [31].
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Figure 5: sketch of the Harvard architecture: the "Memory" is only
used for data and the "Program Memory" stores only programs.

They are not connected.
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Chapter 3: Software
implementation

With all this base knowledge collected in the last chapter, this chapter will move on to the
actual implementation of the emulator and explain the idea behind the software implemen-
tation.

3.1 Concept and basic setup
The goal of this chapter is to convey the structure of the software implementation in
order to reach the target of a portable handheld emulator of the Apple ][ computer
system. Due to the fact that the emulation of the MOS 6502 microprocessor plays a
key role in emulating the Apple ][, this part of the software is discussed very deep to
ensure that the implementation idea is expounded well enough. Other parts maybe
discussed only superfcial without going into depth to stay in the scope of this docu-
ment in means of time and length.

The code shown in this chapter is always very short and abstract. Its target is to show
the structural thoughts and concepts and not the whole implementation. If there is the
need for further information about the code, one can take a look into the source code.
It is documented very well and might answer open questions.

Hardware and software share a really tight relationship. These topics were split into
two distinct chapters in order to keep the overview and explain details of both compo-
nents structured. Through the tight relationship it cannot be avoided that the following
hardware chapter is referred sometimes, because of the fact that the hardware re-
stricts the software and arises the need for further tweaking of the software. Most
details of the hardware are hidden in this chapter and the focus is set onto the soft-
ware side of implementation.

Technical software implementation details

The tools used to implement the software emulator part were AVR Studio 4.19 along
with the latest WinAVR8 toolchain containing avr-gcc in version 4.3.3. Because of the
fact that this is a pretty old version of  avr-gcc, the other parts of the project were
implemented using the AVR toolchain for Mac OS X 10.9 containing the most recent
avr-gcc 4.8.2.

8 Used version of WinAVR was 20100110 (still latest for this platform).

– 29 –



Chapter 3: Software implementation

Further any speed tests which are made using an Arduino, use the Arduino Uno board
in revision 3 together with the Arduino IDE 1.0.5. Detailed information on the speed
test setup can be seen in section "6.3 “Speed” measurement setup“ (p. 91).

Hardware limitations

Due to the fact that the target is a complete self-contained Apple ][ emulator on a
single AVR microcontroller there are some hardware limitations which will also limit
and infuence the software implementation.

• As we will see, speed is an important factor for the emulator. The more, the
better. The used microcontroller will support a clock speed up to 20 MHz. So 20
MHz are used.

• The Apple ][ had up to 64K main memory. 16K were used for ROM and memory
mapped I/O, leaving 48K user space. Not every Apple ][ model had 48K of mem -
ory installed. By example the original Apple ][ came with 4K of 48K user space.
By replacing the main memory with more memory, the owner was able to in-
crease the size of the main memory (see “2.1.2 Memory organisation”, p.  19).
Because of the fact that the used microcontroller provides only 16K of SRAM,
the Apple ][ will be realized in a confguration level of 12K.

• Because of only having 12K out of 48K possible user space, the high resolution
mode is not available and not implemented.

• The demand profle for this thesis (see section “Demand profle”, p.  7) masks
out the BCD mode of the 6502 CPU. It is very complex and to the knowledge of
the author not used in the major Apple ][ software (or even nowadays).

3.2 Emulation of the MOS 6502 CPU
The emulation of the MOS 6502 microprocessor is a great and important part of the
entire software implementation. It will decide over the quality of the resulting hand-
held emulator. The following sections are going to workout the idea of emulating the
entire MOS 6502 8 bit based microprocessor on an Atmel AVR microcontroller, which is
also based on the 8 bit architecture.

One could imagine, that emulating an 8 bit microprocessor on an 8 bit microcontroller
might be the most natural and easiest way because both rely on the same bus size.
There must be taken plenty of control overhead into account because of the software
based emulation of the 6502 hardware. Another difculty is the fact that the microcon-
troller relies on a (modifed) Harvard system architecture and the microprocessor on a
standard Von Neumann system architecture.

3.2.1 Requirements and exclusions
There are several requirements, which need to be matched by the software emulation
of the 6502 microprocessor.

• Accuracy – the software, which was written for the Apple ][ and its micropro-
cessor, cannot and will not be touched by this thesis. It is the idea of an emula-
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tor to imitate the behavior of the emulated hardware so that the original soft-
ware will run without a notice. In order to archive this target, the operations of
the 6502 microprocessor must be implemented with special care and accuracy
to function like the original.

• Speed – the Apple ][ runs, as mentioned, at about 1,023,000 Hertz (1.023 MHz)
[21] (p. 88). This amount of cycles is performed in one second by the original
Apple ][. The goal of this thesis is to create an emulation which is nearly 100%
of the speed of the Apple ][. Please note that a cycle exact execution cannot be
achieved with the means used by this thesis, because it implements the whole
emulator of the Apple ][ which includes also disk I/O, display I/O and keyboard
I/O. They need to be handled as well and this will not allow to make a cycle
exact MOS 6502 CPU emulation where every instruction takes exactly the same
time as it would on the original. Empirical tests pointed out that slowing down
or speeding up the clock slightly does not affect the operation9.

As described earlier, the 6502 takes between two and seven cycles per instruc-
tion, depending on the instruction and its addressing mode. Another premise is
that the microcontroller will run at 20 MHz, so it is around a little bit less than
20 times faster. This leads to the simple mapping that 6502 instructions with
two cycles have 40 cycles to execute on the microcontroller, three cycles have
60 cycles on the microcontroller and so on. This might sound like plenty of
time, but we will see later on, that this in fact is too less time.

There are some specialities of the 6502 microprocessor, as described in the beginning
of the thesis at section “Technical overview“ (p.  12) and “Instruction overview“ (p.  16),
which cannot be implemented due to timing constraints and technical limitations:

• the illegal instruction opcodes – as previously conducted, the 6502 micropro-
cessor has  151 valid opcodes out of 256 (one byte opcode length). So there
remain 105 “unused” instruction opcodes. They are not wired to a defned non-
sense operation (see “Issues on the 6502 and further decisions“, p. 18), instead
they  are  all  performing some action,  sometimes stable  and  sometimes un-
stable. Application developers might have used these illegal opcodes, but for
this thesis all opcodes which are not defned by the datasheet of the 6502 are
treated as forbidden operations which will trigger an emulator exception.

• implementation of some interrupts – as covered in the section “Instruction
overview“ (p.  16) there are three different kinds of interrupts:  the NMI,  IRQ,
RESET and BRK. The NMI and IRQ interrupt are triggered by hardware. Since
the emulation does not support external Apple ][ hardware, this interrupts are
not implemented. The software IRQ interrupt, fred by the BRK instruction, and
the RESET interrupt triggered directly by the RESET key on the keyboard will be
implemented.

9 These tests were made with the AppleWin emulator (https://github.com/AppleWin/AppleWin),  which allows the CPU clock
frequency regulation. Varying the clock from 75% to 125% of the original clock speed does give only a minor change in the
responsibility of the BASIC interpreter prompt or any other elements.
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3.2.2 Designing the emulator – a simple approach
The target is now to design a C function to perform the actual 6502 microprocessor
emulation. In order to do this, one should think of a really rough abstraction of one
instruction execution control fow. It might be performed in this way:

1. reading opcode from memory

2. switching to the correct instruction opcode implementation

3. performing the actual execution or emulation of the instruction opcode; further
memory accesses might be needed in this implementation

4. going back to step 1 and continuing with the next instruction opcode emulation

The simplicity of this roadmap makes it easy to create an initial piece of code, espe-
cially  a  simple  function which  covers  all  of  these  four steps.  This function has  the
signature “void exec()”.

The length of the instruction opcode emulation is only a detail of defnition: because of
the fact that there is the need to emulate all other parts of the Apple ][, e.g. the display
or keyboard input, this function should only run at a fraction of the whole 1.023 MHz
and then return to let the microcontroller perform other tasks. The function should
emulate 51,150 clock cycles and then return. Twenty subsequent calls of this function
will result in the desired 1,023,000 clock cycles. The emulator software can now watch
for input from the keyboard and provide the display output between these emulation
“blocks”.

Suspending the microprocessor emulation will bring up the need of saving the exe-
cution state of the entire microprocessor in order to continue at the same point when
the exec() function is called next time. The state of the 6502 microprocessor consists
of the following data:

• working registers: accumulator, x and y (all one byte in length)

• processor status register: p (one byte)

• program pointer: pc (two bytes to save)

• stack pointer: sp (one byte)

This core 6502 state will later on be extended by state meta-information about the
emulator of the 6502 microprocessor itself and the graphics mode setting. But for now
this state defnition will work fne.

So these state felds will be implemented as global variables, which are stored in the
SRAM of the microcontroller. With this basic idea the resulting code might look like:

1 unsigned char regA, regX, regY, regSP, regP;
unsigned short regPC;

void exec() {
5   unsigned short cycleCount = 51150;

  unsigned char tmp0;

  while (cycleCount) {
    // Fetch the next instruction opcode

10     tmp0 = memread(regPC++);
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    // Switch to the right implementation
    switch (tmp0) {

15       // ...
      case 0x18: // CLC - CLear Carry
        regP &= 0xfe; // Clear carry flag
        cycleCount -= 2;
        break;

20       // ...

      default: // PANIC
        return;
    }

25   }
}

Listing 1: a simple approach to the software emulator of the 6502 microprocessor.

Let us take a quick look at the source code: the outer while loop loops until all re-
maining  clock  cycles  for  the  microprocessor  are  consumed.  In  every  instruction
implementation (e.g. line 18) the number of used clock cycles by this emulated instruc-
tion is subtracted. The function “unsigned char memread(unsigned short addr)”
will  read the memory value at the given address from the emulated Apple ][ main
memory and return it. Because of the fact that this function is not so simple as one
would think, it will be discussed later on in detail.

The given code shows for instance an implementation of the CLC instruction. Because
of the simplicity of this instruction, there is only one important line of code: in line 17
the frst bit of the processor status register will be cleared. All other instructions are
implemented in the same manner. 

But the key fact here is the point, that the function operates on global variables. On
normal computers this might be a normal procedure to write code in this way, because
it is the simplest way to access shared data from functions. This might not apply for
our target platform, which is an embedded device – a microcontroller. So an excerpt
from the compiled assembler code10 looks like:

...
1 lds r24, regPC ; 2 clock cycles

lds r25, regPC + 1 ; 2 clock cycles
mov r18, r24 ; 1 clock cycle
mov r19, r25 ; 1 clock cycle

5 subi r18, -1 ; 1 clock cycle
sbci r19, -1 ; 1 clock cycle
sts regPC + 1, r19 ; 2 clock cycles
sts regPC, r18 ; 2 clock cycles
rcall memread

10 std Y+3, r24
ldd r24, Y+3
mov r24, r24
ldi r25, 0
cpi r24, 24

15 cpc r25, __zero_reg__
breq .L6
rjmp .L3

...

Listing 2: the compiled assembler code for the simple emulator approach.

10 Compiled / generated using: avr-gcc 1_basic_emulation_function.c -S.
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Line one to nine represent the preparation of the parameter of the function call of
“memread()“  combined with the increment  of  the program counter variable.  The C
source code, from which this assembler instructions are generated, is a simple C state-
ment: “memread(regPC++)”.

Global variables, like the complete emulator state, are stored in the SRAM of the micro-
controller,  because the contents  of  these variables  are preserved through function
calls and can be changed from all locations in the program – possibly from an interrupt
handler of the microcontroller. So the compiler cannot assume that the content of this
global variable remains equal during the complete code execution of this function. So
the compiler changes the code in this way that the data from the SRAM are loaded
every time they are referenced and stored directly after a change. Then the value in
the global variable is up-to-date at every time.

In the example from listing 2, the value of the regPC is loaded into the registers r25:r24
of the AVR. Because of the fact that the regPC is post incremented (after the function
call of memread()), the values are copied to some temporary registers. On these regis-
ters (lines 5 and 6) the increment is performed. In this example using the subtract
method. The incremented value is now on r19:r18 and gets directly written back to the
SRAM. After this, the function memread() needs to be called. The registers r25:r24 still
contain the program counter before the increment and this is the register pair, which
is used by the avr-gcc compiler to pass parameters to the subroutine. So here is no
further movement needed, the values are at the right place for the function call.

The summary of this little code snippet is that it takes 12 clock cycles for the microcon-
troller to simply perform an “regPC++” operation. Because of the fact that every single
instruction emulation implementation will deal multiple times with multiple variables
of the processor state, this assembler block will be placed in a same or equal way on
every single usage.

Coming back to the CLC instruction from the top the emulator has 40 clock cycles on
the AVR to execute the instruction and to be inside the speed requirement. So the next
question is, how many clock cycles are needed to execute this instruction.

No Description (apprx.) Clock cycles used

1 Checking the condition of the while statement 6

2 Reading out the next instruction opcode and 
incrementing the program counter (12 cycles for 
regPC++ and memread() call takes 4 cycles)

16 + time of memread()

3 Travelling trough the switch statement and fnding 
the correct implementation

12

4 Execution of CLC 16

5 Jumping back to top and starting at the while 
condition proof

2 (1 if no cycles left)

Total cycle count: 53 + memread() time

Table 7: rough calculation of the cycle count for a single instruction execution.

Table 7 provides a simple calculation of the cycle time for the example instruction CLC.
Note that there is the need for much more than 40 cycles on the AVR. This emulator
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would not run in realtime, because it is much slower than the original for this simple
instruction.  Furthermore  there  are  other  factors,  which will  make the code slower
when it is fully populated with all instruction emulation implementations:

• the code and analysed assembler code consist only of one instruction. If  all
were implemented,  the code would grow up, so that sometimes the limited
range of branch instructions or the rjump will not be enough to get to the new
code location. So the compiler is impelled to use instructions from the AVR RISC
instruction set which will use more clock cycles and range longer and grow up
the sum from table 7.

• the switch  statement  is  not  very  complex  with  only  one  statement.  So  the
compiler realized this in the example code as a simple if-condition. If there are
256 cases everything gets complex and there is the need for more cycles, which
are used by the microcontroller to determine the right code section. Certainly
the compiler  will  implement  this  quite  smart  (using a  jump table or  binary
search) but it will take more cycles.

• the complexity or length of the memread() function. First of all the function call
and return statement  will  take up to ten more cycles.  Further  this  function
needs to check many cases (as you know from the memory map section, p. 13)
and will take a lot of clock cylces.

Putting all these thoughts together will lead to the conclusion, that this design is not as
good as it needs to be to match the speed requirement.

3.2.3 Revision of the first approach
A very simple and common revision of the emulator software could be to remove the
reference to the global variables, inside of the exec() function. As pointed out in the
last section, this part consumes a great number of clock cycles. The sense of this effort
is, that interrupt routines can disturb the execution of the exec() function and maybe
change or read the global variables. So changes must be written back immediately to
let them be actual at every time. 

But for the purpose of this thesis there is no need, that the global variables are every
time at the latest state, because only the exec() function reads and modifes this data.
So with this thought the code can be modifed to operate without making intense use
of the SRAM.

1 unsigned char regA, regX, regY, regSP, regP;
unsigned short regPC;

void exec() {
5   unsigned char a = regA, x = regX, y = regY, 

      sp = regSP, p = regP;
  unsigned short pc = regPC;

  /* original code using the local variables, see listing 1 */
10

  regA = a;
  regX = x;
  regY = y;
  regSP = sp;

15   regP = p;
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  regPC = pc;
}

Listing 3: improved software emulator with local state variables.

This listing shows the usage of local variables. Beneath the SRAM, the AVR RISC micro-
controller has 32 general purpose working registers, which can be accessed directly
with the instructions. Placing the state variables in this registers will allow to speedup
the emulation software, because the compiled code can directly operate on the data
using the instructions. The state of the emulation is still  captured using global vari-
ables, but only one at the beginning to fll up the registers and at the end to write back
the changed data.

The new generated assembler code consists only at the top of LDS (Load Direct from
SRAM) instructions and of  STS (STore direct to SRAM) instructions at the end of the
function. The body of the function is free from those SRAM memory accesses with ex-
ception to the memread() and memwrite() function. All the instructions are now exe-
cuted directly on the register fles of the microcontroller.

This way gives the best opportunity for optimizations, which can be achieved with the
current code structure and from the high level language C. Optimizations inside the
implementation of the instruction opcodes depend on the compiler and its optimi-
zation features.

3.2.4 Internals of the instruction opcode implementations
Until  here only a general  view on the emulation function  exec() of the MOS 6502
microprocessor was given. Although this part of the code, which contains the main
frame around all implementations of the instruction emulation, is an important part
and we were  able  to  optimize  its  execution  speed.  Another  important  part  is  the
implementation of the instruction opcodes. Because of the fact that they are all con-
structed in a similar manner, the following section uses only one example for expla-
nation. All other implementations only differ in minor differences and another seman-
tic.

In order to take a look at the structure of the implementation of an instruction opcode,
the example operation ROL in absolute addressing (0x2e) is used further. Omitting any
details of the structure around, it looks like:

1 // Temporary variables
unsigned char tmp0, tmp2;
unsigned short tmp1;

5 // Get the global vars local 
unsigned char a = regA, x = regX, y = regY, sp = regSP, p = regP;
unsigned short pc = regPC;

// ...
10 case 0x2e: // ROL (abs)

  tmp1 = memread16(pc); // Address
  pc += 2; // PC increment by 2 (word addresss)
  tmp2 = memread(tmp1); // Read value
  tmp0 = (tmp2 << 1) + (p & 0x01); // Calculate Result

15   memwrite(tmp1, tmp0); // Write result
  

  // Adjust flags
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  /* C */ if (tmp2 & 0x80) p |= 0x1; else p &= 0xfe;
  /* Z */ if (tmp0) p &= 0xfd; else p |= 0x02;

20   /* N */ if (tmp0 & 0x80) p |= 0x80; else p &= 0x7f;
  

  // Burn cycles
  cycleCount -= 6;
  break;

25 // ...

Listing 4: exemplary implementation of the ROL instruction opcode emulation.

The code listing starts with the defnition of temporary variables (lines 2 – 3), which are
used to store data during the execution of the instruction implementation. After this,
the global variables are made local (lines 6 – 7), as worked out in the last section. This
initialization is found only once at the beginning of the function. The actual implemen-
tation of the ROL instruction goes from line 10 to 24 and is located inside the while
loop and switch statement from listing 1. To keep this example short, this code was
omitted. The referenced functions inside the implementations are for emulating the
Apple ][ main memory:

• unsigned char memread(unsigned short addr)

As explained before this function reads the value of the emulated memory at
the given location addr. As of the fact that the 6502 microprocessor has a 16 bit
data bus the address is an unsigned short value.

• unsigned short memread16(unsigned short addr)

Like the  memread() function this function also reads a memory value. But it
reads a 16 bit memory value from the location  addr and addr + 1. The two
values are handled in →little endian encoding and returned.

• void memwrite(unsigned short addr, unsigned char data)

This function simply writes the given data at the given memory location addr
into the emulated main memory.

These functions will be covered later on with a more detailed view. As it will turn out,
these functions represent the last great barrier to reach the target of a speed accurate
emulation of the 6502 microprocessor.

By  this  foreknowledge  we  are  ready  to  analyse  the  actual  implementation  of  the
instruction opcode. The schemes of these implementations are easy. They consist of
these parts:

1. fetching of the instruction operand from memory – lines 11 to 13. If the in-
struction works upon memory values, these are fetched at frst. This step is not
needed at every instruction implementation. Accumulator or implied instruc-
tions do not need any data from memory and work upon the internal proces-
sor registers.

2. execution of the semantics –  line 14. The semantics of the instruction are
executed. This part can be found on any implementation.

3. write back of changed data to memory – line 15. If the instruction works on
memory values (e.g. like ROL), the computed result by step two is written back
to a memory location. This step is also not part of every implementation.
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4. adjustment of processor fags – lines 18 to 20. Some fags inside the proces-
sor status register are affected by this instruction. In this section the fags are
set appropriate to the instruction semantics. This step is nearly always needed.
On branch instructions, the fags are read to decide if the branch is taken or
not.

5. adjustment of the cycle count – line 23. Every instruction lasts a frm amount
of time on the original microprocessor. To create a sophisticated emulation, the
emulator needs to track them. This step is present at every instruction imple-
mentation due to the fact that every instruction needs to “burn” cycles.

The  frst  three  steps  are  business  as  usual  and  can  be  performed  in  a  easy  and
efcient manner due to the bit operators in C. The code for rotating left in line 14 is
straightforward. The generated assembler code is also at its optimization limit.

More cycles of the emulator are consumed while setting the fags appropriate and
adjusting the cycle count. These two parts are made in the original microprocessor by
the hardware automagically without any need of further enhancements: the fags are
output lines from the ALU with some logic gates and the cycles are not counted in the
real microprocessor. They are consumed and nobody needs to keep track of them,
because the instruction codes are designed to operate in this cycle count. But for the
emulation these two steps are very important. These are the main locations where the
overhead time and data of the emulation is generated.

As one can see in the actual example implementations, in lines 18 to 20, the implemen-
tation of this fag adjustment must be done using if–conditional statements. The out-
puts from the processor ALU are not available to the program.

With some tweaking of code and cross reading in the Atmel AVR datasheet and the
avr-gcc documents one can fnd out that there is the possibility to read in the status
register of the AVR microcontroller CPU which contains matching fags. This can be
done by using inline assembler statements. Once the value is loaded to a temporary
variable, the C code can use the fags set by the AVR microcontroller. The fags are set
by the last assembler instruction executed. Due to code optimization of the compiler
and the possible reordering of the C code no insurance can be given that the fags
setting is the correct one for the performed operation in the last C code line. Besides,
the checking of these fags would also result in if–statements as implemented in bare C
code. So this optimization would bring no improvement to the code.

There might be some other ways like creating a “boolean” variable for every single
processor fag and writing the values directly to it. All these ways will lead to other
problems, which cannot be solved in a simple efcient way. The problem for these
boolean variables is the reading, where further calculations might become necessary. 

For example: if the carry fag is a boolean variable “C” and the code from line 20 is
transformed into “C = tmp2 & 0x80”, the execution at this point is fairly fast. If the
carry fag needs to be added through the ADC instruction, there is the need for an if–
condition to “normalize” its value to 0 or 1 and use it in ADC (since “ tmp2 & 0x80” sets
the eight bit and this results in a value of 128 or 0 for “C” and so 128 would be added
through ADC instead of 1): 

tmp4 = (signed int) (a + tmp0 + (C == 0 ? 0 : 1));
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Another way is to shift  “C”,  but without knowing which bit is set (other instructions
might set the carry from the frst bit and then the possible values are 0 or 1) there is a
need of an further if statement (here the ternary operator).

If we add everything up, the emulation cannot get around this code and maintain the
fags without if statements. So the optimization of this code cannot be done any fur-
ther.

Since the structure of the 6502 emulation function was discussed, all instruction op-
codes were implemented as proposed by the previous sections and resources of the
6502 microprocessor explaining the semantic of every instruction [17] [32].

3.2.5 Identifying other retardants
Up to here there is the question, if there is any part of the exec() function left which
can be optimized any further.

And there is such a code block:  the switch statement,  which executes the right in-
struction opcode implementation.  The MOS 6502 microprocessor has 151 different
instructions which result in exactly the same amount of case statements inside the
switch statement. The remaining 105 instruction codes are not used and mapped to
the “default” case to catch an illegal opcode and halt the emulation. Because of the fact
that the emulation is implemented in the high level  language C,  one has no more
control over the mapping of the switch statement to assembler. The compiler has gen-
erally  two options to optimize this  code:  generating a  jump table  or  performing a
binary search over the instruction opcode. Which one he chooses is determined for
example by the distribution of the case value. In this case, the instruction opcodes are
distributed over the whole 256 distinct possibilities (see table 3, p. 17) and the compiler
might choose a binary search, because of the fact that the cases are not consecutive. 

The selection of the compiler can be affected by some optimization compiler fags11.
The compiler generated assembler code (default fags) takes around 27 clock cycles to
reach the contents of the desired case-statement12. If we think of the time constraint
from the beginning, this may lead to an important problem: for instructions of the
6502 microprocessor which take two clock cycles the AVR has 40 cycles to perform the
emulation. If more than half of this amount is consumed by jumping to the right loca-
tion, only around 13 cycles are left for performing memory access, computation of the
result and adjusting the fags. As known from previous sections, there are other cycle
consuming parts like the fag adjustment. This leads to the conclusion that this imple-
mentation has a speed problem achieving possibly only half the original speed where-
as 6502 instructions with higher cycle count will probably not cause problems.

The problem at this point is that we cannot get rid of this speed problem from the high
level C language. To fnd a faster solution, there are different other approaches to deal
with the switch statement:

• simulating jump tables in C [33] – a static array is created with 256 felds and
every feld contains a reference to the appropriate label, e.g. 

11 Assuming the use of avr-gcc: use “-fno-jmp-tables” to optimize switch statements.
12 Values  acquired  using  the  AVR simulator  of  AVR Atmel  Studio  4.19-730  and the  “Os”  optimization  level  without  further

compiler fags.
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“static void *array[] = {&&foo, &&bar, ...};“.

The jump to the label is then simply performed by the statement “goto *array[i
+ opcode];”. This solution takes up a great amount of memory inside the SRAM.
If it is located in the program memory, it takes longer to load the data (Harvard
architecture).

• binary search with ifs – theoretically a binary search needs only eight if–con-
ditions to fnd to the suitable case block. Every if-condition is testing whether a
bit is set and after a maximum of eight tests all bits are tested and the control
fow of the program will be in the right place. In this scenario the code gets so
long that the branch instructions and their limited jump range do not last to
jump wide enough. A solution for that problem will slow down the execution.

• inline assembler with C labels – since version 4.5 of the avr-gcc, it is possible
to jump from inline assembler to a C label. So implementing the time critical
jump table in bare AVR assembler and jumping back to C labels for instruction
emulation might do the job. Unfortunately this does not work very well due to
some  buggy  behaviour  of  the inline assembler.  Please  note  that  this  block
would consist of jump initialization, 256 jump instructions and 256 inline as-
sembler C label arguments. This makes the code confusing.

• privilege of cases by splitting the switch statement into two switch state-
ments – as mentioned before, the compiler does not keep the order of the
case statements. So arranging the instructions which are time critical at the top
of the switch statement will have no effect. In order to favour these time critical
statements, one can split the switch statement into two subsequent ones. The
frst  contains  all  critical  cases  and  the  second  one  contains  less  critical  to
uncritical cases. Because of the fact that the frst switch statement is closed, the
compiler can resort inside this switch statement. The cases in this switch state-
ment get checked at frst and so they have a higher priority in contrast to the
second switch statement.

These suggestions do not provide improvement at all with except to the last one. By
splitting the switch statements it is possible to achieve a little performance improve-
ment for the cases in the frst switch statement. It now takes more time for the cases in
the second statement to be executed, because there are two jump tables to pass. The
key to reach the optimal optimization is the classifcation of the instructions for the
frst and second switch statement. Placing all  MOS 6502 microprocessor instruction
implementations with two or three clock cycles in the frst switch and all other in the
second one worked very well in the tests. 

After this discussion of possible optimizations and the proposed optimization of the
switch statement there is no further optimization possible with the current code.

3.2.6 The memory access
Until here the MOS 6502 microprocessor emulation was covered very deep in all its
facets.  Besides the bare instruction emulation there is  a  second,  all-important  key
component: the memory emulation or emulation of the memory map. It will turn out
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later on, that this is the main limitation in emulation speed. Albeit the memory map is
not so much a part of the 6502 microprocessor emulation it will be handled together,
because there is a very tight relationship between these two components.

The main purpose of this memory emulation is to implement the Apple ][ memory
map (see table 4, p. 20) and the MOS 6502 microprocessor memory map (see section
Memory map, p.  13). By nature,  the memory emulation is quite simple: there is an
array which represents the random access memory (RAM) of the emulated system. A
memory access then is a simple array access. Because of the fact that the Apple ][ is
based on the Von Neumann architecture there is no need for separate busses and
memory for  programs.  Everything –  data and programs –  are  located in  the same
memory (array). 

This simplicity is broken by the memory constraints of the Apple ][. The requirements
of the 6502 microprocessor can be met very simple: zero page, stack and the interrupt
vectors are implemented by bare array accesses. But the requirements of the sophis-
ticated Apple ][ memory map are a lot higher. There are different factors to consider
(see table 4 for better understanding of the following topics, p. 20): 

1. the physical memory is limited (on a microcontroller) – as seen later, it is
not possible to emulate the full 48K of “user” memory of the Apple ][. During a
memory read process any address outside this range must be handled and the
same applies to memory write.

2. ROM contents are static & the microcontroller uses the Harvard architec-
ture – the static ROM with the Monitor system and the BASIC (upper 12K of the
memory) does not need to be changed and can be stored as program data in
the program memory section of the microcontroller. On read access of a mem-
ory address in that upper range (from 0xd000 on) the program memory needs
to be accessed and the right values from program memory should be loaded.
Write accesses to this locations should do nothing in order to not violate the
memory integrity of the microcontroller (since this memory region does not
exist in the SRAM).

3. memory mapped I/O needs to be handled – since the memory mapped I/O
operations, like toggling the speaker to beep, were realized in hardware on the
original Apple ][. This must now be done by software and results in more over-
head. On table  5 (p.  20) an overview over the different locations to handle is
given. Due to restrictions of the microcontroller environment only a subset of
this memory mapped I/O is implemented: keyboard, speaker and the graphics
mode selection. If one of this locations is read there is a hardware action per-
formed. Write actions should work also, because the 6502 instructions for writ-
ing will also read the location and perform the desired action.

4. nothing performed in memory “gaps” – there are some memory gaps, like
the peripheral I/O memory, the extension memory and the missing memory in-
side the 48K “user” memory. All these location should return a constant value
on read and do nothing on write to preserve the integrity of the microcontroller
memory.

To put it into a nutshell, the main work of the memory emulation is done during mem-
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ory read. During memory write there is only the constraint to write inside the emulator
memory. As mentioned before, the following functions are responsible for this work:

1. unsigned char memread(unsigned short addr) and 
unsigned short memread16(unsigned short addr) 

to read from a memory location. The second function is only an alias for the
frst to read a 16 bit value in little endian encoding. This will not be covered
deeper since it is only an alias function.

2. void memwrite(unsigned short addr, unsigned char data) 

simply to write contents to the emulated memory.

The source for the memory write function is straightforward:

1 void memwrite(unsigned short addr, unsigned char value) {
   if ((addr >> 12) < 3) // Check if inside array
      mem[addr] = value;
}

Listing 5: source code of the memory write function in C language.

The data is only written into the array if the upper bound is not exceeded. Otherwise
nothing happens as with real hardware, where no memory is attached: the data will be
gone.

In order to read from the memory, different constraints must be checked and the code
is more complex. The structure of the coded looks like (parts omitted):

1 unsigned char memread(unsigned short addr) {
  switch(addr >> 12) {
    case 0x0: case 0x1: case 0x2:
      return mem[addr]; // 12K RAM from the beginning

5
    case 0x3: /* … “case”s for 36K unused RAM … */ case 0xb:
      return 0;

    case 0xc: // Special I/O location
10       switch ((addr >> 4) & 0xff) {

        case 0x00:
          return keyLatch; // Keyboard read
        case 0x01:
          return (keyLatch = keyLatch – 128); // Keyboard reset

15  case 0x05:
   switch (addr & 0xf) { // Soft-Switches
     case 0x0: // Graphics
       return (grTxMode = 0);
     case 0x1: // Text

20        return (grTxMode = 1);
     /* … more … */
   }

      }
25       return 0;

    case 0xd: case 0xe: case 0xf: // Monitor ROM & BASIC
      return pgm_read_byte(&(rom[addr - 0xd000]));
  }

30 }

Listing 6: shortened source code of the memory read function in C.

This source code for the memory read function is self-explaining: the constraints listed
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above are matched with the switch statements. One could also use if-conditional state-
ments. “mem” is the emulated memory array and “rom” contains the 12K ROM memory
and is placed in the program memory section of the emulator13. The other variables
are used for the keyboard key storage and the storage of the selected graphic mode. 

3.2.7 First tests
Up to this point the emulation of the MOS 6502 microprocessor is complete in terms
of running an assembler program. To emulate the Apple ][ computer system the dis-
play output, sound output and keyboard input is needed and will be added later on.
But the running microprocessor and memory emulator can be used to do some frst
tests and take a closer look to the speed constraint.

As test environment the AVR microcontroller at the target clock speed of 20 MHz and
an Arduino for speed measurement is used. (see “6.3 “Speed” measurement setup”, p.
91).  The  program  executed  is  the  System  Monitor  program  (input  prompt,  which
wastes the time on checking the keyboard memory and waiting for input).

To the results: it takes about 146 – 160 ms to emulate 204,600 clock cycles of the 6502
microprocessor. This results in around 765 ms to emulate the entire 1,023,000 clock
cycles of the 6502 microprocessor. Despite the number being under one second (time
for 1.023 MHz of the original 6502) this time is bad, because the emulation consists of
more tasks than shown up to here:

• performing the screen output – how this is going to work will be fgured out
some sections later, but this will be a time critical and consuming process, de-
pending on the screen refresh rate.

• loading pressed key codes – as the original Apple ][ had a keyboard which
performs all actions (key code lookup and storage of last pressed key) in hard-
ware, the emulator must take care of this data and update it to reach a specifc
“key refresh rate”. The Apple ][ also had key codes which are not compliant with
modern keyboards. So there must be a translation performed. This depends on
the keyboard used (also seen later on).

• watching the state of the emulator – if by example an unknown opcode is
executed the emulator must handle this violation, because from now on the
CPU is in an unsafe state maybe confounding data and program. So there is the
need for conditionals which check these possibilities and watch the emulation.

• distribution of emulation over the second – the main time frame for the
emulation is one second. In this time the emulator must run 1,023,000 cycles of
the 6502 microcontroller. By simply emulating these cycles at a complete block
and doing the other stuff in the remaining time, the input and output will be-
come very poor. During this long blocking times no key is read or screen up-
date is rendered. So the emulation must be divided into several parts, distrib-
uted over the second and the I/O tasks need to be performed in between. This
is, because the exec() function runs 51,150 MOS 6502 microprocessor cycles

13 If “avr/pgmspace.h” is included and the target character array is annotated with “const PROGMEM”, the access to this array –
which resides now in the program section of the AVR – is done through the library function “pgm_read_byte(...)”.
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(the 20th part). So 20 function calls will work it and between these calls the other
I/O operations can be done. This will create the illusion of basic “multitasking”
and non lacking display output and display input. But this additional calls also
take time not only for setting up the environment inside the exec() function
(make global variables local etc.), but also performing the expensive subroutine
calls.

All these facts lead to the conclusion that the created emulation is too slow to provide
a speed accurate Apple ][ system. As discussed in the previous sections, all  perfor-
mance improvements are exhausted except for the fnal ultimate improvement: imple-
mentation of the MOS 6502 microprocessor emulation in assembler language as a last
chance for human-based optimization.

3.2.8 Going back to the roots
Switching from the high level C code to assembler code is not as complicated as it may
sound. The structure which was created during the last sections can be used further.
On the other hand, the implementation in assembler will provide the complete control
over optimization and realization. So the implemented assembler code will be as op-
timized as possible and extract the last bit of performance from the microcontroller.

The presented assembler implementation makes extensive use of assembler macros.
Those macros are a bunch of assembler instructions which are grouped together and
which can be parameterized allowing to replicate this code block multiple times inside
the source code with different parameter registers.

In order to create working assembler code, some register conventions were declared
and the registers were named through a macro to allow a later change and better
usage. This convention is not discussed here, because it has no further importance;
just some alias names for nicer code.

Memory emulation

Beside the fact that the source code now is in the assembler language, there is no
great difference. The many if-conditionals in the memory read function may be imple-
mented a bit more efcient. A further speed improvement comes from the fact that
the memory read function is now realized as an assembler macro. Every occurrence is
replaced by the instructions grouped by the macro, making the subroutine call and
return needless and saving time with this advance.

The drawback of this “improvement” is the code size: the memory read macro has a
length of approximately 101 lines (without blank lines and labels) and every line stands
for an instruction. On every place in the emulator implementation, where the memory
read macro is embedded, these 101 instructions are replaced. And because of the fact
that this macro is used extensively, the code gets really large. But that problem is, as
an exception, not important for further considerations.

Because of the length of the memory read macro, only an excerpt is shown to demon-
strate the structure:
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1 .macro memread ah al
cpi \ah, 0xd0
brlo 2f
; -- EXCEUTED, IF ADDR > 0xcfff --

5   mov ADDRTMP, \ah
  subi ADDRTMP, 0xd0
  movw ZL, ROML ; ROMH:ROML = array base address14

  add ZL, \al
  adc ZH, ADDRTMP

10   lpm RES, Z ; Load data
  rjmp 4f ; Finished
2:
cpi \ah, 0x30
brsh 3f

15 ; -- EXCEUTED, IF ADDR < 0x3000 --
  ldi ZL, lo8(mem)
  ldi ZH, hi8(mem)
  add ZL, \al
  adc ZH, \ah

20   ld RES, Z
  rjmp 4f ; Finished
3:
clr RES ; Nothing to load
cpi \ah, 0xc0

25
breq 26f ; -----------
rjmp 4f ; Extend jump
26: ; -----------

30 ; --- Handle access in 0xc0xx ---
  ; ...
  7:
  cpi \al, 0x40
  brsh 8f

35     ldi ADDRH, 0x01 ; 0xc030 - 0xc03f: Speaker toggle
    in ADDRTMP, 0x05 ; Speaker is connected on PB0
    eor ADDRTMP, ADDRH ; XOR for toggle
    out 0x05, ADDRTMP ; Write back port data
    ldi ADDRH, 0xc0 ; Reset high address byte

40     rjmp 4f
  ; ...
  ; -------------------------------
; ...
4: ; Finished

45 .endm

Listing 7: condensed assembler macro to read from emulated memory.

The macro takes two arguments (line 1), which are replaced by the registers, which
contain the address word, locating a value in the memory. The result is later stored
into the register “RES” (alias for r21). The macro contains at its end a variable label
called “4”.  Whenever a  memory read operation has been fnished the control  fow
jumps to this location, omitting all other branches to save time. Because of the extra-
ordinary length of the macro sometimes the branch instruction does not stretch wide
enough to reach the label “4”. So there is the need for jump “extension” code, e.g. lines
26 to 28. 

If the comparison in line 24 is not true the branch in line 26 needs to be “bne 4f” – if
not true then go to the end of the macro. Due to limited range of the branch instruc-

14 In order to “load” or work with different ROMs containing the BASIC language the base address of the array in program
memory, containing the ROM data, is placed at the beginning of the emulation into a register pair (16 bit value) and then
loaded from there. See section “The main frame of the emulation function“ (p. 49) for further details.
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tion, the opposite test needs to be used which will lead to a “rjmp 4f” if they are not
equal and skip this relative jump if they are equal and continue execution in line 32.

The ROM address is checked at frst and followed by the RAM address. It is most likely
that the next byte will be read from ROM because of the fact that the “operating sys-
tem” (BASIC and Monitor program) is located there. But it might also be possible that
the program wants to access some data, e.g. BASIC program lines in the RAM. In con-
trast to this it occurs most seldom that the memory mapped I/O is accessed. So this is
located at the end of the macro.

One can see that a ROM and RAM address take “only” around 13 AVR clock cycles and a
memory mapped I/O address lasts longer depending on the location. This is a quite
good  result,  because  the  solution  from  section  “The  memory  access“  (p.  40)  with
dedicated functions takes at least 10 AVR clock cycles15 to get only into the function. So
it will take a lot more AVR clock cycles then this solution.

From line 35 to 40 the memory mapped I/O code for the sound output is shown. The
code simply fips the logical level on the output pin of the microcontroller, creating a
short noise. Steady repetition will create a tone. If a memory read is executed at this
address (0xc030 to 0xc03f) it will take around 18 AVR clock cycles.The other memory
mapped I/O implementations differ only in their function, but share the same struc-
ture. They are omitted here.

The macro for writing into memory is quite simple:
1 .macro __memwrite__

mov ADDRTMP, ADDRH ; Check if we are exceeding our memory
cpi ADDRTMP, 0x30 ;  limit of 0x3000
brsh 1f

5
ldi ZL, lo8(mem) ; Load memory array offset
ldi ZH, hi8(mem)
add ZL, ADDRL
adc ZH, ADDRH

10 st Z, RES ; Write data

1: ; Continue if out of memory
.endm

Listing 8: complete memory write assembler macro.

It checks – like the C variant – if the desired address is inside the memory array and
writes the data only then. This macro has no arguments; the value to write is stored in
“RES” and the address to write to is stored in the register pair “ADDRH:ADDRL”. It takes
around 3 AVR cycles if the address is out of bounds and around 10 AVR cycles if the
address is in range. In comparison to the C function this macro saves a lot of cycles.

Memory emulation and addressing modes

One point, which has not been covered until now, is the implementation of the ad-
dressing modes. In the C MOS 6502 microprocessor emulator code the different ad-
dressing modes – to read or write a memory value – are implemented directly into the
instruction implementation.  For example reading a value with the indirect  indexed

15 Assuming, that instructions “CALL” (5 cycles) and “RET” (5 cycles) are used due to limited range of relative calls. Please note,
that beneath the subroutine call and return also the used registers are saved onto the stack and restored. This takes cycles
too.
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(indY; see table 2, p. 16) addressing mode looks like: 

memread(memread16(memread(pc++)) + y)

To keep the code nice and organized macros are used for these addressing modes,
too. The structure of these macros is very simple: they use the program counter of the
emulated CPU as well as the address registers to load the value onto “RES”. So after
the macro,  “RES”  contains  the memory value and “ADDRH:ADDRL”  the intended ad-
dress . The program counter is also incremented while the instruction bytes are read
to get the memory address. The example of the indirect indexed addressing mode as
assembler macro looks like:

1 ; Read the next byte of the program counter and increment
.macro __memread_pc__
memread regPCH regPCL
adiw regPCL, 1

5 .endm

.macro __memread_indY__
__memread_pc__ ; Get the zero page address from arg
clr ADDRH

10 mov ADDRL, RES

__memread__ ; Read the 16 bit word at the zero page
mov TMP0, RES
ldi TMP1, 1

15 add ADDRL, TMP1 ; Next memory location contains ADDRL
adc ADDRH, ZR
__memread__
mov ADDRH, RES
mov ADDRL, TMP0

20
__cyc_save_cross_addr__ ; Save original address

add ADDRL, regY ; Add value of Y register
adc ADDRH, ZR

25
__memread__ ; Read result value
.endm

Listing 9: addressing macro to read a indirect indexed value.

This takes many AVR clock cycles, due to the fact that the memory is read four times.
But one should consider that this addressing mode is very sophisticated. Instructions,
which use this  addressing mode,  take around six  to seven 6502 clock cycles.  That
means they can take between 120 and 140 AVR clock cycles.  Additionally, the cycle
count of instructions with this addressing mode is variable: if a page border is crossed,
one more 6502 CPU cycle is consumed. The macro in line 21 manages a part of this,
but it is not expounded closer. The other addressing modes are implemented in the
same manner.

The jump table

As worked out before, the switch statement in C is a main component. It is the target
to fnd a solution which performs the “way” to the requested instruction opcode emu-
lation implementation as fast as possible. The solution used here is a static jump table
with constant cycle count to pass.
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1 __memread_pc__ ; Get next 6502 opcode; RES = opcode

ldi ZL, pm_lo8(jmptable) ; Load memory offset of jump table 
ldi ZH, pm_hi8(jmptable)

5 add ZL, RES ; Add argument twice, because jmp is
adc ZH, ZR ;  32 bit wide
add ZL, RES
adc ZH, ZR
ijmp ; Indirect jump to location

10
jmptable: ; The jump table
jmp brk_0x00
jmp ora_0x01
jmp dummy

15 jmp dummy
jmp dummy
...

Listing 10: the structure of the used jump table.

This jump table has a constant cycle count of eleven (11) AVR cycles per pass. In com-
parison to the number of AVR cycles needed by the switch statement (see “Identifying
other retardants“, p. 39), this assembler variant is more than 50 percent faster.

The principle is simple: in line 1 the next opcode is loaded into “RES” (does not count
into cycle count of eleven). Once “RES” (the target emulation instruction) is known, the
location of the jump statement in the jump table, beginning at line 11, needs to be cal -
culated. In order to do that, the “base” address of the jump table label is loaded into
the Z register and “RES” is added twice. The result now points to a jump instruction
which brings the program to the right case.

An AVR “jmp” instruction has a 32 bit opcode and takes two →words, twice the pro-
gram architecture size (Harvard architecture). So the frst jump instruction is located 0
words after the base of the jump table,  the second two words after, the third four
words after and so on. Every valid jump instruction of the jump table is a multiple of
two (words). Not adding twice the target index in the jump table would sometimes
point to the second word of the jump instructions, since they are two words long. This
would cause wrong behavior of the microcontroller. 

Once the new location is computed inside the Z register, the indirect jump instruction
is used to jump to the specifc location in the jump table and then it jumps from there
to the right label with the opcode implementation. The jump table has 256 entries. All
illegal opcodes are mapped to a “dummy” label which will trigger the error of an un-
known opcode and exit the emulation.

Instruction emulation in assembler

The implementation of the instructions in assembler does not differ very much from
the structure of the C implementations (see “3.2.4 Internals of the instruction opcode
implementations“, p.  36). First the arguments are read, then the computation of the
result is performed, the result is stored, the fags are set and the cycle count is sub-
tracted from the remaining 6502 cycles. The following example in listing 11 gives an
insight into the look and feel of these implementations.

The structure follows the C structure. But it needs to be pointed out that the setting of
the fags can be implemented more sophisticated and more efciently by using less
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cycles. Also the AVR assembler instructions are used to perform the action intended by
the opcode:

1 ; ROtate Left (abs, 6)
rol_0x2e:
__memread_abs__
bst RES, 7 ; Save the shifted out 

carry bit
5 sec ; Transfer the 6502 carry 
bit into

sbrs regP, 0 ;  the AVR status register
clc
bld regP, 0 ; Set the new carry bit
rol RES ; Rotate left with AVR 

carry
10 __memwrite__ ; Writeback result

__nz_flags__ RES
__cyc__ 6
jmp loop

Listing 11: implementation of ROL instruction in assembler.

In this example, the AVR “rol” instruction is used directly in line 9. In line 5 to 7 the AVR
carry fag is adjusted to the one of the 6502 processor status register to perform the
computation. 

Also the T fag, which is a general purpose fag on the AVR and its related instructions
“bst” and “bld” are very useful while transporting the bits from the AVR status register
to the emulated 6502 status register and vice-versa.

After computing the result (line 9), it is saved back to memory (line 10). Due to the fact
that  the  memory  read  macro  (line  3)  saves  the  address  of  the  read  location  to
“ADDRH:ADDRL”,  the memory write macro can reuse it without recomputing it.  After
that the remaining fags are set (line 11). In this case the N and Z fag of the 6502
microprocessor. Because of the fact that these two fags are often set together, they
are wrapped into their own macro.  Then the cycle count of this  instruction is sub-
tracted (line 12) and the emulation of this instruction is fnished with jumping back to
the top (line 13) and fetching the next opcode.

This is the very simple structure, which is followed by all instruction emulation imple-
mentations. It needs to be pointed out that implementing it directly in assembler gives
more control  over  the speed,  but  also  improves the  accuracy  of  the emulated in-
struction. By comparing the MOS 6502 microprocessor →ISA  [17] [32] and the AVR
RISC ISA [34] for a single instruction one can simply work out the differences and map
6502 instructions to AVR instructions. There is no need to reimplement them. With this
one can save work and beneft from the performance of the instructions. To a specifc
degree, this is  only a mapping of  6502 instructions to AVR instructions. It  helps  to
ensure the correctness of the implementation.

The main frame of the emulation function

The jump table, instruction emulation and memory access macros form the main core
of the emulation function. They are embedded into the “main frame” which is respon-
sible for counting the clock cycles, loading global variables into registers and exiting
the emulation function. The abbreviated code looks like:
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1 .global mos6502_exec
mos6502_exec:
  __init__ ; Save regs and load global data

5   lds TMP1, is_apple2_plus ; Load the address of sel. ROM
  cpi TMP1, 0x00
  brne ldrom2
  ldi TMP1, lo8(apple2ROM) ; If use_rom1 == 0 : use ROM1
  mov ROML, TMP1

10   ldi TMP1, hi8(apple2ROM)
  mov ROMH, TMP1
  rjmp skiprom2
ldrom2:
  ldi TMP1, lo8(apple2PlusROM) ; If use_rom1 != 0 : use ROM2

15   mov ROML, TMP1
  ldi TMP1, hi8(apple2PlusROM)
  mov ROMH, TMP1
skiprom2:

20   lds CL, unused_cycles ; Cycle counter = 51150 cycles
  clr CH ;  + cycle offset from r24
  ldi TMP1, 0xce
  add CL, TMP1
  ldi TMP1, 0xc7

25   adc CH, TMP1
  rjmp loop ; Skip 6502 pc increment

loopPCInc:
  adiw regPCL, 1

30 loop: ; Begin of main loop
  cpi CH, 0 ; Check: is cycle counter 7 or
  brne nonstop ;  lower -> not enough cycles
  mov TMP1, CL ;  for the next instruction
  subi TMP1, 7

35   brpl nonstop
  jmp end ; Return
nonstop: ; Go on silently

; ... ... ... the jump table with implementations ... ... ...
40

end: ; Normal exit
  sts unused_cycles, CL ; Unused cycles
  sts emulator_state, ZR ; Everything fine
  __final__ 

45   ret
dummy: ; Error exit: illegal opcode
  sts unused_cycles, CL ; Unused cycles
  ldi RES, 0xfe ; Error on illegal opcde
  sts emulator_state, RES

50   __final__
  ret 

; ... ... ... other exit labels ... ... ...

Listing 12: condensed main frame of the 6502 emulation function in assembler.

The main frame is segmented into different parts. At the very beginning, the registers
used by this function are saved onto the stack and the global variables are loaded into
the specifc registers. This is done by the “__init__” macro (line 3). Because of the fact
that it is really simple in its structure (only SRAM load and stack push instructions) it is
not covered any further here. Before leaving the function the register values needs to
be saved to the global variables and the saved registers should be restored. This is
done by the “__final__” macro before a “ret” (e.g. line 45 or 49). The used AVR regis-
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ters must be saved and restored, because they are replaced by other values, but need-
ed by the calling program.

After setting up the registers the function is ready to start. There is the need to make
further arrangements: from line 5 to 18 the base address of the ROM is loaded into
“ROMH:ROML”. This is necessary to allow the emulator to run with different ROMs. For
example the original Apple ][ had the Integer BASIC ROM whereas the Apple ][ plus
came with the Applesoft BASIC ROM. Loading the base address of the used array into a
variable in dependence of the state of the global variable “is_apple2_plus” allows the
emulator to switch between the different ROMs reclined in the AVR program memory.
The code is simple: it is an if–conditional statement to load either the one or the other
array base address into the register pair.

The next task for preparation is to setup the cycle counter. Once this function needs to
perform 51,150 MOS 6502 microprocessor cycles, the counter needs to be an unsigned
short with a length of 16 bits. The registers “CH:CL” are reserved exclusively for the
counter. The cycle counter counts down using the “subiw” instruction. From line 20 to
26 the counter is loaded with the static value. But there also is the value of the global
variable “unused_cycles” added (line 20). This global value stores the unused and not
consumed cycles from the last emulation execution.

Because of the fact that the 6502 instructions have a varying cycle count – between
two and seven cycles – not all 51,150 can be consumed. For example: if there remain
less than seven cycles and a seven cycle instruction is executed, the emulator will use
more than the remaining cycles and the cycle counter register becomes negative. The
binary number wraps around and because it is assumed that the value is unsigned, it
will continue executing (since it is a very great number now) the emulation and will not
return. To prevent this effect, the function returns if there are less than eight cycles
and stores the remaining amount in this global variable to be used next time. At the
beginning of the main loop (line 30) the cycle count is checked at frst. This is another
simple code block performing two conditional statements: if the condition is true, the
program jumps to the end label. Otherwise the execution continues with line 39. This
line contains the code from listing 10 – the jump table and instruction implementa-
tions. The “loopPCInc” label (line 28) is simply used to increment the program counter
before executing the next loop.

At the end of the function (line 40 and following) the registers must be saved and re-
stored  as  described  through  “__final__”.  Before  doing  that  the  global  variables
“unused_cycles” and “ emulator_state” are set (e.g. line 42 and 43).

The global variable “unused_cycles” has the meaning as described prior. The global
variable “emulator_state” stores the state of the emulator. There are multiple “end
labels” which differ in the value set to this variable. For example if the program jumps
to label “end” this variable is cleared, because no error happened. But if the program
jumps to label “dummy” it is loaded with the value 0xfe, indicating that an illegal opcode
was used. 

The calling “program” of the exec function can determine, after the return of the emu-
lation function, by reading this variable, if any error happened and do some error han-
dling actions. There are more such “end labels” sharing the same structure, catching
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errors or events like usage of decimal or high resolution graphics mode. 

Details of development and testing

The presented parts form the assembler code implementation of the MOS 6502 micro-
processor emulation. But there is a last outstanding question: “how was it developed
and tested?”.

Because of the fact that the assembler code is specifc to the Atmel AVR RISC archi-
tecture it cannot be executed on x86 computers directly. So for the development of
this specifc module AVR Studio together with the AVR Simulator was used. 

The implementation of the 6502 instructions should not contain any faults, because of
the fact that the emulation relies on the AVR instructions. To ensure the highest code
accuracy  every  instruction  in  every  addressing  mode  was  manually  tested  during
development using the AVR Simulator of AVR Studio.

3.2.9 New speed measurements & summary
After taking a closer look at the assembler implementation and putting it together to a
runnable version, it is time to check the performance of this new implementation. As
described in section “3.2.7 First tests“ (p.  43) the C implementation takes about 146 –
160 ms to emulate 204.600 clock cycles of the 6502 microprocessor.

Using the same test, with the same test conditions and replacing the C implementation
with the created assembler implementation results in 118 – 120 ms to emulate those
204.600 MOS 6502 clock cycles. This is a speedup of around 22% in contrast to the C
implementation. So it will take around 600 ms to emulate the 1.023 MHz of the MOS
6502 microprocessor.

This sounds very good and might give the other operations enough time to perform in
one second. The fnal speed measurement will be done at the end – in “5.1.1 Achieved
emulator speed” (p.  82) –, when all  components are assembled and running to get
some realistic performance data. Be aware of the fact that the test was done with the
Monitor program, but there was no real load – only the input prompt.

Finally, this subchapter shows the evolution of code in order to match the constraints of
speed accuracy and accurate implementation and describes the successful way resulting in
a  highly  optimized  assembler  code  to  emulate  the  MOS  6502  microprocessor  and  the
memory  map of  the Apple  ][  system.  Please  note that  the assembler  code  is  so  highly
optimized that it might not be possible to get any greater performance improvements out of
the emulator.
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3.3 The emulator runtime environment
Up to now the MOS 6502 microprocessor emulation module was created. Although
this  component is  the main part  of  the emulator,  there are  other  important  parts
which will lead to a usable handheld device. For example some sort of display output
or keyboard input are needed in order to use this emulator. In the following those
parts are called the “emulator runtime environment”.

Beneath  these  tasks  the  runtime environment  has  some further  tasks:  it  needs  a
possibility to exit the emulation and perform management operations like resetting
the  emulator  or  loading  programs  into  the  memory  of  the  emulator.  This  special
features will make the result more useable, for example if there is an option to load
original software and run it on the emulator. The variety of this features are limited by
some factors:

• program code size – it might not seem so, but the code so far has a size of
around 98K (100,826 byte) and borrows around 77% of the program memory.
The 98K can be divided into 12K for each of the both ROM memory arrays and
75K for the CPU emulation. The CPU emulation consumes this great amount of
size, because of the fact that the really heavy memory read macro is replicated
a lot more than 151 times (at least one memory read usage on every instruc-
tion implementation), giving a lot more than 15,251 lines of assembler code
(the memory read macro has a length of 101 lines without blanks and labels).
So only 23% of program memory is left for the code size of the runtime envi-
ronment.

• SRAM size – by constraint the implemented Apple ][ system has 12K of main
memory. So 75% of the static RAM of the AVR microcontroller are used by the
Apple ][ memory. Due to the fact that AVR programs also need space in the
static RAM for variables the runtime environment is limited here.

• time – having nice features is great, but also the time for this thesis is limited
and nice features take a lot of time to be developed. So the remaining time for
the project will decide which features will get implemented.

• systemic restrictions – due to the fact that the entire Apple ][ is emulated on a
single AVR microcontroller there might not be enough resources for some fea-
tures or they are not possible, because they violate system restrictions. By ex-
ample the Apple ][ system had the possibility to save and load binary data to
and from a standard cassette tape. This cannot be implemented, because it has
hard realtime requirements (bit duration etc.). But the emulator will not allow
this precise timing and also the divided structure of  the  exec() function in
twenty calls prohibit some bit detection system. And due to the fact that the
AVR is not aware of multitasking, this feature cannot be implemented with the
current structure.

With  these  limitations  and  the  target  of  an  usable,  single  microcontroller  based,
portable Apple ][ emulator the following features will get implemented further:

1. backend menu – this menu serves as graphical user interface to the emulator
runtime environment  and  allows  the  user  to  perform one of  the  following
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actions. It should be a simple text based backend menu using the keyboard to
make selections.

2. hibernation – the entire emulator state can be saved to one of ten hibernation
slots. It will be stored in a non-volatile storage, like an EEPROM. There should
be the menu option to load this state back into the emulator and continue the
emulation later on.

3. loading of  disk  images –  it  would  be  tedious  to  deal  only  with  the BASIC
prompt.  So loading programs from a foppy image16 would give  it  more at-
traction to try old software. At this point there is the need for a tradeoff: due to
speed limitations of the emulator along with hardware and time restrictions,
the Disk ][17 will not be implemented. Instead there will be a textual assistant in
the backend menu, which can load a program from a disk image directly into
the emulator memory. The disk image is located on an SD card.

4. resetting the emulator – it should be possible to simply reset the entire em-
ulator to the state of a fresh Apple ][.

5. adjustment of backlight – as the target is a handheld device it will  have a
display. Displays need to have a backlight to display content. The brighter the
display backlight  is,  the more current is  consumed and the battery will  last
shorter.  So a simple adjustment option will  give the users the possibility to
adjust the backlight to their wishes and extend the battery life. In the backend
menu there  should  be  a  slider  to  let  the  user  adjust  the backlight  setting.
Because of the fact that this is done by hardware it will be covered later on.

3.3.1 The structure
In fgure  6, an overview over the overall code modules forming the entire emulator
developed in this thesis, is given.

16 Please note that it might be illegal to download disk images from the internet without having them originally or having a
permission of the publisher.

17 The “Disk ][“ was a foppy drive for the Apple ][, which was developed slightly after the release of the Apple ][ original [35] [36].
It came with an extension card and was plugged into an extension port on the Apple ][ main board. Then the driver software
was displayed in the main memory (in the region of page  0xc1 to  0xc7) due to memory mapped I/O. As known from the
appropriate sections the memory read function is critical regarding speed and code size. 
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Figure 6: module and file structure of the Apple ][ emulator project.
(The arrows express a usage relation.)
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As visible, the entire emulator consists of nine modules with a specifc dedicated task
to every module. Upon here the module “MOS 6502” was discussed deeply. The other
modules  together  form  the  runtime  environment  of  the  emulator,  maintaining  all
kinds of utility work and I/O management. Together with the Makefle these fles form
the entire software needed for the Apple ][ emulator.

The “SD” module manages the access to a MMC / SD storage card with FAT16 or FAT32
fle system. It is further used to load program data from disk images into the emulator.
The disk images can be placed on any microSD card on a computer or other device
and then simply read in by the emulator. Due to the fact that developing a working
library to read SD cards is its own dedicated topic for a thesis, in this case a working
library was used. Here the popular library “Petit FAT File System Modul” from Elm Chan is
used [37]. So the fles or internals are not described here, but rather only used.

The module “uisettings.c” only contains some C defnitions for the user interface, like
font and background colors and other utility information. This allows later on a simple
change of the →UI appearance if there is the need for it.

The module “main.c” is the main fle, containing the main function as the entry point of
code execution. The main emulation loop and backend menu of the emulator runtime
environment are implemented here.

3.3.2 Display output of the emulator (module “Display”)
The video output  is one important feature for the emulator itself  and the runtime
environment to display the backend menu. There are many options for video output,
such as generating Composite video or VGA output from the AVR emulator. Libraries
are existing for all those options. But this video output modes are realtime driven. That
means that the display is painted line by line very often during a second. This leads to
a very high utilization of the microcontroller only with refreshing the screen. Around
90% of the time is spent on video output. But as we kno, the emulation takes the main
part of time of the CPU. So this is not an option. These external devices also do not
lead to a handheld device.

So in this thesis, a LCD display module with GRAM (graphical RAM) and display con-
troller will be used. These display modules are connected through a bus and control
lines to the microcontroller and can exchange data over the bus. The main point is that
the graphical  RAM stores the pixel  information and the microcontroller  can decide
when he updates the display data. Until this event the pixel data are shown as set in
the GDRAM the entire time without the need of refreshing them. This gives the soft -
ware the freedom to run the emulation. The details over connection and interfacing
the display and its type will be given later on in section “4.1.2 Interfacing the display”
(p. 66).

The “Display” module from fgure 6 provides some public interface functions to let the
main display drawing function, located in main.c, draw the display.

1 void lcd_init(); // Setting up the display
void lcd_clear(unsigned short color); // Clearing the display
void lcd_apple2_text(char x, char y, unsigned char c, char 

flashHigh);
5 void lcd_apple2_lores(char x, char y, unsigned char block);
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void lcd_printa2c(char x, char y, char c);
void lcd_printfp(unsigned char x, unsigned char y, const char 

*string, ...);

Listing 13: public interface of display.c.

Listing 13 lists all interface functions provided by the display driver. The frst two func-
tions are needed during initialization to connect to the display and to clear the entire
screen with a given color.

The functions in line four to six are used to display the Apple ][ screen. They provide
the basic  function needed by the text mode and low resolution graphics mode. As
intended by the function names, “lcd_apple2_text” draws an Apple ][ character (see
section  “Text  mode“,  p.  22)  onto  the  screen  at  the  specifed  location  and  “lcd_-
apple2_lores”  draws two low resolution blocks with its colors (see section “LoRes
graphics mode“, p. 23) onto the screen. Using this functions it is possible to create the
function “draw_apple2_display” (in main.c) to render the screen. It iterates through
the screen memory and uses one of the prior functions to bring the characters or
graphic blocks onto the display.

The last function (line 8) is used for the emulator runtime environment backend menu,
to have a text based console output. It uses a bigger font (8x16 pixels vs. 7x8 pixels of
the Apple ][ font) to display a more readable menu.

This very simple interface allows a powerful display output. The display draw function
needs only be called between the exec() function calls for 6502 microprocessor emu-
lation to render the display output of the Apple ][.

One further note:  the function “lcd_printfp”  is  a  simple reimplementation of  the
famous “printf” string output function. Because of the fact that every “normal” string
eats up static RAM this function operates directly on strings, which are placed in the
program memory consuming only this type of memory. The macros “lcd_printf” and
“lcd_print” in display.h perform this action automatically and hide this behavior to
the programmer.

3.3.3 Keyboard input (module “Keyboard”)
The next important part to make the emulator usable is the keyboard for data input.
To create a portable handheld as result the keyboard was build from scratch. More
details are discussed later on (see “4.2 The “keyboard” microcontroller”, p. 72).

As  seen many times before,  CPU time is  very  rare.  And building a  keyboard from
scratch brings the need of a keyboard matrix with a permanent scanning through this
matrix to detect any key presses immediately. Because of the immediate scanning pro-
cess this cannot be done on the emulation microcontroller. For that reason the key-
board will be sourced out to a second smaller microcontroller, referred as “keyboard
controller”.

Another reason is that the key code of the Apple ][ keyboard differs from modern key-
boards just as the Apple ][ keyboard contained some special keys which are not exist-
ing any longer. So there is the need for a mapping of key codes. This means further
CPU utilization, even if it is not big. But also keys like the REPT key (see “The keyboard“,
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p.  24), which replicate a steady key press, will  result in more CPU utilization. And a
keyboard from scratch might be smaller to ft into the case for the handheld device.

The task of the keyboard controller is to scan for key presses, translate the pressed key
into an Apple ][ key code and transmit it via serial communication to the main emu-
lation microcontroller. This advance brings two benefts with it:

• serial communication implemented in hardware on the microcontroller –
this means that the emulation microcontroller can receive a key code without
executing code for it and spending time on waiting for responses. The emu-
lation microcontroller only needs to check if a receive bit is set and can read the
received key code directly from the serial buffer. This causes minimal CPU time
consumption.

• abstraction through an interface – the two controllers are communicating
through the serial communication. This allows later on the replacement of the
DIY keyboard with a a PS2 or USB18 keyboard without changing the emulation
microcontroller.  Only the keyboard microcontroller  must be updated with a
new frmware capable of the new device. This abstraction makes the design
more fexible for further development.

The “keyboard” module provides these public functions:
1 void keybrd_init();

char keybrd_get_ascii();
short keybrd_get_num(unsigned char x, unsigned char y);
unsigned char keybrd_prompt(unsigned char x, unsigned char y, 

5 unsigned char length, char *dest, unsigned char offset);

Listing 14: public interface function of keyboard.c.

The frst function is used to setup the serial communication interface and should be
called very early in the main function. 

The function “keybrd_get_ascii” is the main workhorse, waiting for a key code from
the keyboard controller.  Because of  the fact  that the  keyboard sends Apple ][  key
codes, they are converted to an corresponding ASCII character. Please note that this
function blocks until a character is available in the serial communication buffer. The
last two functions (lines 3 to 5) are some helper functions to provide an input prompt
for numbers or strings as UI (user interface) elements in the backend menu.

The entire library is only used by the backend menu of the emulation runtime environ-
ment to provide some basic user interface input for the users to let them control the
menus. 

The keyboard input during the emulation is done directly in the memory read macro in
assembler (see “Memory emulation“, p.  44) to achieve the maximum speed. The in-
tended part of the memory read macro is:

1 ; ... ... ... other parts of macro memread ... ... ...
; --- Handle access in 0xc0xx ---
cpi \al, 0x10
brsh 5f ; Keyboard character read

5   lds RES, UCSR0A ; Check if data received via UART

18 Interfacing a PS2 keyboard with a microcontroller is fairly easy and there are many libraries performing this task. Interfacing
USB devices is more complex, but still possible. HID (human interface devices) can be interfaced through the USB 1.0/1.1 low
speed protocol and can be interfaced by a microcontroller. See http://www.asahi-net.or.jp/~qx5k-iskw/robot/usbhost.html.
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  sbrs RES, RXC0
  rjmp 16f ; If not: jump to keyboard end label

  lds RES, UDR0 ; Load keyboard value
10

  cpi RES, 0xf0 ; Check if special action needs to be
  brlo 17f ; performed (MENU / RESET)
  jmp resend

15   17:
  sts key_latch, RES ; Store new value
  rjmp 4f ; Finished

  16:
20   lds RES, key_latch ; 0xc000 - 0xc00f: Keyboard access

  rjmp 4f
5:
; ... ... ... other parts of macro memread ... ... ...

Listing 15: condensed assembler code of receiving characters via serial communication.

In line fve it is checked if the microcontroller received a data byte through serial com-
munication. If this is false, he jumps directly to line 20 and reads out the value from the
key latch, storing the value of the (last) key code (see section “The keyboard“, p. 24).

If there is serial data in the one byte buffer, it gets read out on line 9 to the register
“RES” and stored on line 16 to the “key_latch” variable. Because of the fact that “RES”
is the register with the “return” value of this macro the key value can remain there. 

Since there are some special keys on the keyboard there is the need for further checks.
Whenever the “SHIFT + RESET” or “CTRL + RESET” (to get into the emulation runtime
environment  backend  menu)  or  RESET  key  is  pressed,  the  keyboard  controller
transmits a key code greater than 0xf0. This case is caught in the lines 11 to 13. If such
an key code is transmitted, the emulation function is terminated and the key code is
placed into the “emulation_state” variable. The main loop then checks if a further
action needs to be done. This approach is more responsive than placing the key code
from the main loop during two emulation execution calls of exec(). 

3.3.4 Bringing software into the emulator (module “DSK I/O”)
The module to read disk images is very important, since it allows to load programs and
other content into the emulator and run them using the emulator. As described before
it uses the SD card to load the program data.

The old 5¼-inch foppy disks can be read out by an old computer with such a foppy
drive and written into a single fle, called  disk image (with the fle extension .dsk)19.
These disk images may then be placed on a microSD card using the computer. The
microSD card is inserted into the microSD card slot of the emulator and simply access-
ed through the backend menu. The text based assistant will guide the user through the
lists of disk image fles and programs on the disk and load the data from the disk im-
age into the emulator.

To accomplish this mission, one needs to know more about the format of Apple ][ disk
images. Unfortunately, no literature about this topic was found. So the format was dis-
covered using the learning-by-doing technique and the “DiskBrowser” program from

19 Downloading them from the internet without owning them or having a permission from the author might be illegal.
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Denis Molony20. Using the program, some sample disk images and a basic knowledge
of the →FAT fle system it is possible to fnd a way to the structure of the disk images.

Because of the fact, there exist several different disk formats for the Apple ][ (DOS disk,
ProDOS disk, … etc.) disk, only the simplest (DOS disk) is used further to keep things
simple.

Also no source code is shown bellow, because it would confuse due to the fact that it is
really long and mixed with the code for the user interface. Instead the general struc-
ture is explained.

Structure of the disk images

A disk image fle has a static size of 143,360 bytes. The image is segmented at a block
size of 256 bytes into 35 tracks with 16 sectors each track. So the entire image fle is
divided into 560 blocks with a block size of 256 bytes. Dealing with the blocks in the
right order and interpreting the values correctly will allow to read “fles” or program
data from the disk image.  The structure of the disk image resembles the FAT (File
Allocation Table format). 

Figure 7 shows a graphical overview over the structure. On a simple DOS disk, the frst
block  to  read is  the  VTOC  block.  It  contains  many information  about  the disk,  its
memory state,  the last  allocated  block  and probably  some other  data.  Beside this
information the locations 0x01 and 0x02 of this block contain the track and sector of
the frst CATALOG block on the disk. 

Furthermore, the VTOC contains some unique data to identify a “valid” DOS disk, like
locations: 0x34 and 0x35 – the maximum number of tracks (0x23 = 35) and sectors on
the disk (0x10 = 16) – and location 0x37 – the number of bytes per block ( 0x01 = 1 →
256 byte). Although the track of the frst sector needs to have the value 0x11 (17) at
location 0x01 on this block.

Figure 7: general structure of Apple ][ disk image files (Apple DOS disk format).

If this data is checked one can advance to the CATALOG entries. As the name intends,
these blocks contain index entries with information about the fles on the disk and
where to fnd those fles. The bytes  0x01 and 0x02 of a CATALOG entry point to the
next catalog entry. If  they are both zero,  there is no further CATALOG entry.  Every
CATALOG entry contains seven index entries. An index entry has a length of 0x23 (35)
bytes, starting at 0x0b (11) in the CATALOG block.

20 Unfortunately, Denis Molony's website is not existing any more. Only the program can be found at Asminov's Apple ][ archive:
ftp://ftp.apple.asimov.net/pub/apple_II/utility/DiskBrowser.jar.
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An index entry represents the “header” of a fle with control information. It contains
the name, length and other fle attributes. On index 0x02 of the entry, the fle type is
specifed whereby the lower nibble identifes the fle type and the 4 th bit of the upper
nibble is set if the fle is locked. Interesting fle types are: 0x01 for Integer BASIC pro-
grams, 0x02 for Applesoft BASIC programs and 0x03 /  0x04 for binary data. The frst
two bytes (0x00 and 0x01) of the index entry point to the track and sector of the TSList.

TSList stands for “Track-Sector-List”. This is a simple list of all data blocks assigned to
the fle represented by this CATALOG index entry. Beginning at location  0x0c in the
TSList block a track and sector pair is listed, which points to the attendant data block. If
both, track and sector, get zero, there is no more data to read. So obtaining the fle
data is a simple loop over the TSList, reading out the intended blocks.

Placing a program in the memory

Now that we know how to read out data from the disk image the next question is how
to place  this  program  data  in  the emulator  memory in  order  to  get  the program
running. The three fle types described prior have a preamble in the beginning of the
data containing the length of the data followed by the start memory location in the
Apple ][ memory. So the disk loader knows at which point the data should be placed in
the main memory.

But that alone is not enough to get it running in case of BASIC programs. They need
further adjustment of other “confguration” memory locations:

• Integer BASIC – this program data does only have a preamble with the length
of the data. The location to place it in the main memory can be calculated: the
length of the data is subtracted from the highest (user-)memory location. This
is the location for the frst byte of the Integer BASIC program to load. Now only
the “HIMEM” variable (at 0xca and 0xcb at the Apple ][ main memory zero page),
pointing to the highest memory location must be set to this base address. After
this highest memory location the tokenized Integer BASIC program lines from
the disk are placed. If  a new line is added, everything gets shifted back, the
“HIMEM” variable is decremented and the new line is placed at the upper end of
the memory [25].

• Applesoft BASIC – the preamble contains the length of the data and the lo-
cation where to place it  in  the main memory.  Several  locations need to be
changed in the zero page of the Apple ][ memory [38] (p. 140):

◦ program start position at 0x67 and 0x68 (normally 0x0801)

◦ simple variable space start position at 0x69 and 0x6a (one or two memory
locations after the end of the program)

◦ start position of the array space at 0x6b and 0x6c

◦ pointer to the end of the numeric storage at 0x67 and 0x68

◦ start position of the string storage at 0x69 and 0x70

• binary data – the preamble contains length and location in memory. This data
must simply be placed starting at the location in the main memory.
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Once the data is placed in the memory and all locations are adjusted properly, the em-
ulation can run the program.

Usage in the emulator

If one has entered the backend menu of the emulator runtime environment, there is
the option of loading data from a disk image from the SD card. Before selecting this
option the user needs to make sure that the SD card is inserted into the SD card slot.
Then the user can browse through the disk images and load a program from this
image (see also “3.3.7 Emulator backend UI insights“, p. 62). Please note that the em-
ulator must be set to the right BASIC required for the program on the disk. Due to the
fact that the BASIC version can only be changed through an emulator reset, the data
will be lost. Switching automatically to the correct BASIC isn't possible, because the em-
ulator needs to run and stay inside the BASIC prompt in order to inject a BASIC pro-
gram. On emulation resume the Apple ][ BASIC would “boot” and drop all data in the
memory.

3.3.5 Hibernation feature (module “State I/O”)
The last feature to implement, in order to complete the feature list, is the hibernation
feature. It allows the storage of the current emulator state to a non-volatile memory
including the 12K emulated main memory of the Apple ][ system. Once the user wants
to go back to this state he can simply load the data and continue emulation at this
point.

As non-volatile memory an EEPROM is used. The software module provides only two
public functions: 

1 void save_state();
unsigned char load_state();

Listing 16: public functions of the state I/O module.

The function “save_state” shows a text based save dialog, displaying the slots and
their names. It lets the user select a slot to store the current emulation state to and
give it a name with a string input prompt. The opposite functionality is done by the
function “load_state”: the list of slots is shown to the user and he needs to select a
stored state. The state is loaded and the emulation resumed.

The used EEPROM has a capacity of 128K. A single state has a size of 12K for the
Apple ][ memory and some additional bytes for the global variables defning the state
of the emulation. Furthermore the EEPROM is divided into pages of 128 bytes. Since
the memory cells of the EEPROM have a defnite life time and due to some hardware
restrictions, writing one byte ages an entire page of 128 bytes. So in the following, en-
tire EEPROM pages are written and read.

The 12K of the Apple ][ main memory are exactly 96 EEPROM pages. For storing a com-
plete state with control information 97 EEPROM pages are used. This gives 10 places or
“slots” where states can be saved. The left memory of approximately 8K remains free,
because there is no further usage for it.
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0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x00 0x2a state cyc a2p gm keyl accu regX regY regP SP PCL PCH Name

0x10 Name

...
Unused space of the frst EEPROM page

0x70

0x80

12K of Apple ][ emulator main memory (EEPROM pages 1- 97)...

0x3070

Table 8: memory map of a single emulator state.

A single page entry has the structure, as shown in table 8: the frst value is the magic
number of this “fle”. The next six values are the global emulator variables, storing the
graphics mode (gm), key latch (keyl), emulator state (state), unused cycle count (cyc)
and the currently used ROM (a2p). These are the global “management” variables of the
emulator.  The following six variables are the 6502 processor registers,  defning the
state of the 6502 microprocessor. The name (0x0e to 0x19) is only used to let the user
identify the state by a name he entered on save.

As seen the entire state of the emulator is stored in the EEPROM enabling the emu-
lator to completely restore an older state from “hibernation”. The ten available slots
are distributed evenly over the 128K EEPROM memory.

3.3.6 Sound output
The sound output was not mentioned until here, but this feature is quite simple be-
cause the Apple ][ did only use a standard speaker. When the speaker memory ad-
dress was referenced the logical level of the speaker was changed performing a short
click. Doing this process very often and at a specifc frequency allows the output of
(basic) tones. This design was inherited using a piezo buzzer on an output pin of the
microcontroller. The code is implemented directly in the memory write macro, as seen
in the code excerpt of memory read macro in section “Memory emulation“ (p. 44).

3.3.7 Emulator backend UI insights
Up to here all features of the feature list for the emulator runtime environment are
implemented. All these features provide a sophisticated backend menu to manage the
emulation. To enter the backend menu from the emulation, one needs to press “SHIFT
+ RESET” or “CTRL + RESET”. The following fgure shows the backend user interface.

The main menu, as shown in fgure 8, is pretty simple: the user only needs to press the
number of the desired option. 

Figure 9 shows the save dialog of the hibernation feature. On save or load the names
of all ten slots from the EEPROM are listed to let the user decide which slot he wants to
use. When the user selects a state (not shown) by typing the number and pressing
“ENTER”, he is prompted to enter a name for this emulator “image” to identify it later
on (only in the case of a save dialog). With the next “ENTER” the user confrms and the
data is saved. Note that one can exit all actions by pressing the “ESC” key.
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Figure 10 and 11 show the user interface to select a disk image from the SD card and
load a program from this image. First a list of all image fles on the root directory of the
SD card are shown. The user can enter the number and press “ENTER” to select an
image fle or browse through the list by pressing “→”, if there are more fles than a
screen can show. Any other input will quit this dialog. When the user selects an image
fle the contents of the disk image fle are shown, if possible. This also is a long list,
which can be passed through with the same advance. By entering the number of the
program data  to  load  and  pressing  “ENTER”,  it  is  loaded  into  the  memory  of  the
emulator. Please note that the emulator must be ready for this. That means that – in
case of a BASIC program to load – the emulator must be set to the correct ROM and in
the BASIC prompt.

Beneath the program number in fgure 11 for every line more information is shown:
the type of the program (A = Applesoft BASIC, B = binary data and I = Integer BASIC),
the length in sectors and the name. If an entry is colored gray, it cannot be loaded into
the emulator memory due to the fact that it is to big for the emulator memory or has
an unsupported type.
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card. Currently only one disk image is in the SD

card's root directory.

Figure 8: main menu of the emulator backend menu. Figure 9: save state dialog, showing all slots and the
input prompt.

Figure 11: first page of the CATALOG of the disk
allowing to user to select a program to load.
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Chapter 4: Hardware
implementation

After implementing the software for the handheld Apple ][ emulator device, this chapter
covers the implementation of the hardware. It will also cover some software aspects which
are related very tight to the hardware. The way towards this final structure is not shown,
because that would go far beyond the scope of this document.

The concept of the hardware realization is very simple: the fnal result should be a
battery powered, portable Apple ][ emulator device which runs the emulation on a
single AVR microcontroller using as less peripheral parts as possible.

As carried out in the chapters before the complete system is split into two parts: the
emulation microcontroller  ,which  runs  the emulation,  performs display  output  and
contains the backend menu to manage the emulation. The other part is the keyboard
controller, managing the custom keyboard built from scratch. 

The following sections will frst explain the emulation microcontroller and its hardware
design and then the keyboard microcontroller. Finally a bill of materials will list all the
components which are required and the schematic shows the “circuit”.

4.1 The “emulation” microcontroller
The microcontroller  dedicated to emulate the Apple  ][  system, including  input  and
output, needs to have a very high performance to match the speed constraint of the
emulator.  Browsing the different  types of  Atmel  AVR microcontrollers,  the ATMega
1284 was chosen, because it matches all requirements as best as possible. It provides
the following features [39]:

• (up to) 20 MHz clock speed (maximum for AVR 8 bit microcontrollers of the
ATMega series).

• comes in a DIP package and is easy to mount for the purpose of a prototype.

• provides 128 KB program memory.

• has a SRAM of 16K (e.g. in contrast to the ATMega 2560 which has 256K pro-
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gram memory, but only 8K static RAM and is a surface mount component).

• comes in a DIP-40 package with with 32 usable pins as in- or output pins to in-
terface the peripheral components (display, keyboard, etc.).

• provides other hardware features, which will come in handy later like SPI, TWI
(IC2), UART / USART for serial communication and hardware timers.

• runs with standard +5V logic level.

4.1.1 Pinout and pin mapping

Figure 12 shows the pinout of the ATMega 1284 [39] with the pin mapping for this pro-
ject. The pins are assigned as follows:

• port A and port C form the 16 bit data bus to the display. Using two entire ports
for the display makes it easy to write the data to it, because no data needs to
be shifted out or transformed in any other way.  Despite the communication
between the display and the →MCU being bidirectional by design, in this case
only an unidirectional model is used.

• port C0 and C1 are also related to the TWI hardware providing a two wire com-
munication interface. Since the EEPROM uses this TWI interface to communi-
cate, these pins are used to perform this task. Because of the fact that these
two pins are assigned with two tasks only one can be performed at  a time
(display output or TWI communication).

• port  D7 drives  the  backlight  brightness  of  the  display  by  using  →PWM.  By
adjusting the generated square wave the brightness of the backlight can be
increased or decreased. This has not only aesthetic reasons but is also used to
extend the durability of the battery. The background light consumes the main
part of current (around 165 mA on maximum brightness).  By driving it with
pulse width modulation, the power consumption can be reduced to around 70
mA at the darkest setting and thus extending battery life. It also shows a nice
usage of the hardware timer.
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• port D2 to D6 drive the display controller. These are the control lines, controll -
ing the display driver IC.

• port D0 (RXD) and port D1 (TXD) are used for serial communication with the
keyboard  controller  using  the  hardware  UART  interface.  Currently  the  TXD
(transmit data) line is not used but it is reserved for later use and could serve as
a  debug  output  during  further  development.  The  keyboard  controller  only
sends data, so only the RXD pin is needed.

• XTAL1 and XTAL2 connect to the 20 MHz quartz generating the system clock
signal.

• VCC and GND are connected to the power supply.

• port B5 to B7 and RESET are used for the AVR →ISP to program the microcont-
roller. The pins are connected to a standard 10 pin box header to simply con-
nect a programming device [40] (p. 7, fgure 3-1).

• port B4 to B7 are also used to interface the SD card through the SD card library,
because these pins belong to the hardware SPI interface.

• port B1 is a simple debug output pin. Every time the emulation performs 1.023
MHz of the emulated MOS 6502 microprocessor the logical state of this pin is
toggled and so a speed measurement can be done very easily (see p. 91).

• port B0 serves as the speaker output. This digital pin is directly controlled by
the MOS 6502 emulator and its output state is toggled every time the speaker
memory location of the Apple ][ is referenced.

Using this pin mapping only two free pins remain (port B2 and B3), which do not allow
the  implementation  of  any  further  features  like  annunciator  ports,  utility  strobes,
cassette input or outputs or game strobe inputs as shown in table 5 (p. 20).

From the side of the emulator microcontroller the serial connection to the keyboard
needs no further adaption. It was sufciently explained in the software section (see
section “Keyboard input (module “Keyboard”)“, p.  56) and there is no need for more
hardware. Only a wire connecting these two pins of the emulator microcontroller and
the keyboard microcontroller is needed. Also the speaker output (port B0) and simple
debug output (port B1) are single port outputs and set by previously discussed code
segments.

4.1.2 Interfacing the display
The display  used for  the prototype  is  a  standard 3.2  inch TFT  LCD display  with  a
resolution of 320 pixels by 240 pixels. It uses the Solomon Systech SSD 1289 display
controller.  Because of the fact that the display data bus is 16 bit  wide, the display
works with 16 bit RGB colors. Thereby the RGB is split into fve bits of blue, six bits of
green and fve bits of red. Beneath the data bus, there are the fve display control lines,
which control the behaviour of the display [41]:

• CS (PD2) stands for “chip select” and is active low: if this line is tied to ground,
the display accepts commands. If this line is hold high, no changes can be per-

– 66 –



Chapter 4: Hardware implementation

formed. This is useful because the TWI uses two pins of the display data bus
and using this control line one can prevent changing some data on the display
while using the TWI lines.

• RS (PD3) or “register select” sets the selected target to read or to write from.
The display not only has the graphics data RAM for the pixels and their color, it
also has some registers controlling many other features of the display. Setting
this line to low indicates that the target of the next operation or command is
the RAM; setting this line to high indicates that a register is the target.

• WR (PD4) and RD (PD5) are determining if one wants to read data from or write
data onto the display. The states are [41] (p. 21, a)):

◦ WR := 0 and RD := 1 in order to read from the display.

◦ WR := 1 and RD := 0 in order to write to the display.

◦ the other two confgurations are forbidden.

• RESET (PD6) is low active. If this line is pulled to ground, the controller resets
until this line is set to logical level high.

The process of setting up the display consists of toggling the RESET line to reset the
display controller and its data registers and then writing various data to the (control)
registers of the display to setup the display for usage. Those data which are written to
the register are responsible for setting up properties like color model, inactivation of
sleep mode, screen resolution, gamma correction and a lot more properties to (de-)
activate the different features of the display. This initialization data is quite standard
and was adapted from the example programs provided by the distributor of the dis-
play.

Once the display is ready to run the next challenge is to put data on the screen. There
are two possible ways to do that:  setting a single pixel  or  using the “burst”  mode.
Setting a single pixel might sound like the right way, but it is not. If the entire screen
should be flled with a color (clearing the display), 76,800 pixels must be send to the
controller with their color. By setting every pixel, there is the need to send the two
color bytes, the location of the pixel on the screen with two bytes and toggle the WR
line. This are six write operations to the I/O pins of the microcontroller, which must be
performed 76,800 times. This process takes a long time due to many redundant data
transmissions (color, pixel positions and control lines). 

Fortunately the “burst” mode works in another way: once a region of the display needs
to be redrawn (to clear it  or show a character symbol),  multiple pixels must be set
forming a rectangle or window to redraw. In this mode, the driver sends at frst the
start location (PS) on the screen and then the end location (PE) on the screen.

This spans a window region on the display to update as seen on fgure 13. This window
is going to be flled. Next the display writes the 16 bit color data on the bus for the frst
pixel. Every time the WR line is toggled (to low and then to high) a pixel of this color is
added and drawn to the window. The arrows in fgure  13 indicate  the direction in
which the “virtual” pixel-pen is moved. Internally, the display controller has a simple
pointer to the graphics data RAM which is incremented in a certain way after every WR
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toggle. This direction can be adjusted in the control registers. To display an image with
multiple colors the driver needs to change the color data on the bus before toggling
the WR line. This allows the controller to draw complex images in one “piece”, omitting
the calculation and transmission of the pixels.

Using this mode, the function to clear the display with a specifc color can be written in
the following way:

1 void lcd_clear(unsigned short color) {
  DISPLAY_WAKE;

  unsigned short i;
5

  _lcd_write_address(0, 0, 319, 239);
  _LCD_DATA(color);

  for(i = 0; i <= 0x9600; i++) {
10     _PULSE_WR();

    _PULSE_WR();
  }

  DISPLAY_SLEEP;
15 }

Listing 17: display function to fill the display with a solid color.

First,  the display is selected through  CS. It  is now ready to take and execute com-
mands. Then the size of the window or start and end points are transmitted (line 6).
After this, the desired color to fll the display with is directly written to the bus (line 7)
and the loop from line 9 to 12 “adds” the pixels to the window. Since i is an unsigned
short, it ranges from 0 to 65,535. But there is the need to write 76,800 pixels, which
would go beyond the range of the counter. By pulsing the WR line twice in the body of
the loop, two pixels are set and the loop only needs to iterate over half the number of
pixels (38,40010 = 0x9600). Finally, in line 14, the display is “released” to ignore further
data on the control and data lines. Using this technique, it takes a small amount of
time to fll the screen.

Using the exact same scheme the functions “lcd_apple2_text”  (Apple ][ character
and low resolution block draw function) and “_lcd_put_ascii” (draws an ASCII text
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character in a 16x8 pixel font) from the display driver (display.c)  can be created.
Simple time measurements give the total amount of around 36 ms for drawing an en-
tire Apple ][ screen with 960 characters. Be aware of the fact that this time is slowed
down by the function to draw the display (“draw_apple2_display”  in  main.c),  be-
cause of the fact that the global memory array must be accessed 960 times and the
global variable for the graphics state.

The “fonts” are stored as black-and-white images in an array. Every byte stores 8 pixels.
For the 5x7 pixel Apple ][ font, 7 bytes form an image of a character. These font arrays
are stored in the program memory to save storage in the SRAM. The same applies for
the enhanced 8x16 pixel font of the backend menu.

4.1.3 Talking to the EEPROM
An EEPROM (non-volatile) is used to store the states of the Apple ][ emulator and pro-
vide the hibernation feature. EEPROM memory cells have a limited lifetime. The used
24LC1025 EEPROM with 128K memory from Microchip has a life time of  1.000.000
write cycles per byte. This is only the minimal number of write cycles it will sustain. If
the bytes lifetime is passed the data written, might not be stored correctly anymore
[42].

The 24LC1025 comes in an DIP 8 package and uses the TWI communication interface
to talk to other devices. Figure 14 shows the pinout of the IC [42]:

• A0, A1 are used to chain up to four EEPROMs together. This allows a memory
extension from 128K to a maximum of 512K. Because of the fact that for this
project 128K are sufcient, these pins are tied to GND.

• A2 is an non confgurable chip select and must be tied to logical high [42].

• VCC and GND are connected to the power supply.

• SDA and SCL are the two wires of the TWI interface. SCL serves as the clock line
and SDA is then used to transmit the data bitwise.

• WP prevents writes to the EEPROM if this pin is logical high. Since we do not
need this feature, this pin is also tied to GND.

So reading and writing to the device is done by the TWI interface. The TWI is a protocol
that was developed by Phillips with the name IC2 at the beginning of the 1980s. It uses
(only) two wires, the serial data line (SDL) and serial clock line (SCL) to transmit data
between devices. This protocol allows up to 127 devices on the same two wire bus. In
most cases there is one master and multiple slaves, which communicate to the master.
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Figure 14: pinout of the 24LC1025 EEPROM from Microchip with
pin mapping (bold).
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Although a multi  master TWI is also possible  [43]. To communicate, the master oc-
cupies the bus and sends the address of the device he wants to talk to. Then he sends
the information whether he wants to write or read the device21. The data will be trans-
mitted by the master (if he wants to write) or the client (if the master wants to read).
Finally the master releases the bus. The protocol has more mechanisms like START and
STOP conditions to ensure a stable communication. Explaining the entire TWI protocol
would go beyond the scope of this document and is omitted here [44].

In order to operate proper the two TWI lines need to be pulled up through a pull-up
resistor  [44]. In this case 10kΩ are used (see also recommendation in  [42]). The TWI
bus can operate at different bus speeds. In this project the hardware TWI module of
the AVR is used and set to a maximum rate for the EEPROM: 400 kHz [42].

The “State I/O” module relies on the “EEPROM” module (fles eeprom.c and eeprom.h).
These source fles manage the hardware TWI module of the ATMega 1284p and pro-
vide two handy functions to read from or write to the EEPROM. Because of the fact
that the TWI lines are used by the display data bus, only one of these two components
can be active at a time. If the TWI hardware of the AVR is turned on the port settings of
the pins are overwritten and adjusted for the TWI. After turning off the TWI module,
the overwritten pin settings are set back to the initial ones. So if the program starts the
execution of code in one of the EEPROM functions the TWI is turned on and at the end
of  the  function  turned  off.  This  ensures  that  the  display  can  then  continue  work
normally. Since the microcontroller is not able of multitasking and no interrupts are
used, there is no possibility that display methods are called during an active TWI.

The actual implementation of these functions is of no interest, because it consists only
of sending data and receiving the result. So this will not be discussed any further. 

4.1.4 The SD card and ISP connectors
As described the pins RESET and port B5 through B7 are used for the ISP interface. The
ISP or “in-system-programming” is  an interface used by programmers  to bring the
compiled program from the computer onto the AVR microcontroller.  Therefore the
hardware SPI module of the microcontroller is used (lines port B5 to B7) along with the
RESET pin. The idea behind this interface is to program the microcontroller in its target
circuit without removing it, as described in AVR application note 910 [45]. Because of
the fact that this interface relies on the hardware SPI interface of the microcontroller,
other SPI peripherals could disturb the ISP. Once the programer wants to program the
microcontroller, it pulls down the RESET line. Then the AVR microcontroller automat-
ically sets all lines to input with pull-ups disabled to receive the program data [45] (p.
2). Once the programming is fnished, the programer releases the RESET line and the
microcontroller runs the fashed program. The data put on the SPI lines, which may be
connected to another peripheral device, does not affect the other device, because the
chip select line is inactive and so the slave ignores any data.

Like the TWI, the SPI protocol is used to transmit data in a serial way between two
devices. It consists of three lines: MOSI as “master out – slave in”, MISO “master in –

21 Apparently the device address consists of 8 bit. If there can up to 127 devices, one bit in the address is left. So the LSB is used
to determine, if the master wants to read or write [43] [44].
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slave out” and SCK as the serial clock. A forth line, called CS, is then used to activate a
slave [46] (see fgure 1 on page 1). This allows to connect any number of slaves, only
limited by the pin number of the master for the chip select pins.

In contrast to the TWI protocol the SPI has no further conditional statement (START or
STOP condition) and only shifts the data out. Furthermore the TWI can operate at a
maximum of 400 kHz (fast mode) and 3,4 MHz (high speed mode) [43] [44], whereas
the SPI module can operate with more than 10 MHz [39]. Another difference is, that
the SPI receives a byte when it sends and vice-versa: when data are shifted out by the
master through the MOSI line, data from the MISO line get shifted in from the client
(see fgure 1 on page 1 of [46]). Like the TWI protocol a deeper explanation could fll an
entire document. So other details are omitted here. 

As put out before a SD card is connected to the microcontroller to provide access to
disk images. This SD card can be interfaced through an SPI interface. As shown in the
pinout (p. 65), the SD card is connected through the hardware SPI port to the ATMega
1284p on port B4 to B7. Dealing with the SD card and parsing the content on the card
in order to access fles on the FAT16 fle system of the SD card is performed by the
“Petit FAT File System Module” library [37].

On the hardware side, the SD card operates on a voltage level of 3.3 V. As pointed out
before the emulation microcontroller works with 5V, since this voltage is required by
using the 20 MHz crystal. A linear voltage regulator is used. It regulates the voltage
from the 5V power source down to the required 3.3V and the ground line is common
(another regulator is also used to regulate the raw battery power down to 5V). There
are four other lines to care about:

• SS (socket select), MOSI and SCK have one property in common: they are out-
put lines of the master and input lines of the SD card (slave). They are more
complicated because the outputs of the master and can rise up to 5V which will
destroy the SD card. So in this case a simple voltage divider with values of 1.8
kΩ and 3.3 kΩ is used to reduce the voltage level [47] (p. 122).

• MISO as input of the master and output of the SD card (slave). This line can be
connected directly, because it is an input line of the emulation microcontroller
and does not get up to 5V, since the SD card operates on 3.3V only and can out-
put this voltage at its maximum. Due to the fact that the ATMega 1284p re-
cognizes voltages as high if they are above 0.6 × VCC (equals 3V or more for
VCC = 5) this line needs no further treatment [39] (p. 323).

By this circuit and all the thoughts before, the SD card can now be accessed through the
simple API, provided by the PetitFS library. And with this last component the hardware inter-
face setup of the emulator microcontroller is complete. So the next aspect of the hardware
implementation is the keyboard controller.
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4.2 The “keyboard” microcontroller
As shown before, the keyboard microcontroller is responsible to listen for keyboard
input and send it to the emulator microcontroller via UART.

By design this structure allows an easy change of the input keyboard method, because
of the abstraction between the keyboard controller and the emulator microcontroller.
In the following sections the custom-made keyboard will be explained. It is fairly easy
to change the program of the keyboard microcontroller to interface another keyboard,
like a PS2 or USB keyboard or even a touch screen display with an on-screen keyboard,
without the need of updating the emulator microcontroller or being restricted through
limitations of pins or CPU time on the emulator microcontroller.

The requirements for the custom-keyboard for this project are: it should be (1) small
enough to ft in a portable device case, it should be (2) portable by itself (unlike a stan-
dard keyboard) and fnally it should contain (3) the exact keys and keyboard layout of
the Apple ][.

For the keyboard controller an Atmel AVR ATMega 8 microcontroller was used [48]. In
contrast to the ATMega 1284p used for the emulator this microcontroller has less fea-
tures. The main features used are:

• comes in DIP 28 package, providing 23 programmable I/O pins.

• with 1K of static RAM.

• with 8K of program memory.

• with external quartz up to 16 MHz and with internal quartz up to 10 MHz.

The little amount of static RAM and program memory are not a big concern since the
task of this component is very clear and simple. The external quartz is not used in
order to save I/O pins for the keyboard matrix. The internal quartz is used at a speed
of 10 MHz.

4.2.1 Pinout

Figure 15 shows the pinout along with the port mapping for the keyboard controller
[48] communicating with the emulation microcontroller and scanning through the key
matrix. The port assignments are:
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Figure 15: pinout of the Atmel AVR ATMega 8 microcontroller with pin mapping for
the keyboard controller (bold).
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• port B, port D5 to D7 and port C4 and C5 are used for the 13 keyboard matrix
columns output (order pointed out in the pinout).

• port C0 to C3 for keyboard row inputs.

• VCC and GND for power supply.

• RESET connected to the reset pin of the ISP. Despite this microcontroller has no
dedicated ISP pin it  is useful  to reset both microcontrollers together  to put
them into “sync” although this is not necessarily needed.

• port D2 for software driven UART transmit as uplink for the scanned key codes
to the emulator microcontroller.

• ports D0, D1 and D4 are reserved for later enhancements to connect a PS2
keyboard. These ports are related to the hardware USART module of the micro-
controller, but this feature is not implemented yet.

So the port D3 only remains free without usage yet.

4.2.2 Keyboard switch matrix design
As known from the beginning of this document, section “The keyboard“ (p.  24), the
Apple ][ had 52 keys. To keep hardware design easy the keyboard was interpreted as a
matrix consisting of 13 columns with four rows. Whereby the last row, containing only
the space key, is moved to the fourth row and flls it up to 13 columns. So there are
four rows with 13 columns each.

Scanning the keyboard is now very simple: all columns are passed through and pulled
to logical high level and the other twelve rows are pulled down to ground, so that only
the current column has the state logical high. By iterating through the row inputs and
watching out for rows which are at logical high, the microcontroller can exactly identify
the key which was pressed because he knows the column put high and the row which
is high.  These  two information identify  a  single  key  in the  matrix  like  a  point  in a
coordinate system is identifed by x and y. In order to get this working stable the rows
(which are inputs) must be tied to a defned state. So they are tied to ground using a
pull-down resistor of 10 kΩ. By performing this action very often, the microcontroller
can watch the state of the keys faster than any human can press. 

So if a key is detected as pressed, the row and column position is translated by the
simple formula “index := row × 13 + column” to an index of a linear array and the
Apple ][ key code is simply read from this array. If a modifer key like CTRL or SHIFT is
pressed, the index is looked up in another array containing the right key codes for this
modifer key22.

But  there  is  another  problem called  “debouncing”.  The keys  used for  the custom-
keyboard do toggle their state when they are pressed for a very short amount of time
until  they make a steady connection. If  one considers a simple circuit  containing a
toggle switch and an LED this effect is present, but it is so short (normally less than a
fftieth part of a second) that the human eye cannot recognize it. Using an oscilloscope
one can see this effect. This effect will distort the pressed key: the key controller will

22 The key codes can be found in [21] on page 7 in table 2. Please note that all key codes for ← and → are interchanged.
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recognize multiple key presses and send them to the emulator instead of recognizing a
steady key press. The solution is very simple: after the frst time of detecting a key
press the microcontroller waits for a debounce time of some milliseconds before he
rechecks the state of the switch. If the switch is already pressed he can recognize it as
a key press. The delay time for the software debouncing is not fxed and varies from
switch to switch. 

This simple construct serves as a keyboard with controller. Note that the number of
used I/O lines for the keyboard (currently there are 17 I/O lines dedicated to row input
and column output) can be reduced with other means, for example to six by using an
external IC: a “Johnson counter”. It will pulse the column lines one at a time, but with
only a reset and clock line. Then only the four row input lines are needed. To stay as
simple as possible this  design was not  chosen.  In  fact  the keyboard controller has
enough I/O lines to perform this action in software and there is no need for an ad-
ditional IC.

Please note further that key presses on the Apple ][ keyboard produce only one char-
acter independent of the time the key is hold.

4.2.3 Software UART transmit
If a pressed key was recognized and a key code was calculated the keyboard micro-
controller transmits it  via UART to the emulator microcontroller.  The next time the
emulator microcontroller checks the reception of a key code it can read the pressed
key code. Because of the fact that the reception buffer of the emulator microcontroller
is only one byte, key presses get missed if they are not read often. The reading of
these key codes is done by the CPU emulation memory read macro (see “Memory
emulation“, p. 44) and so there is no need for further attention, because the emulator
software takes care about this and checks it as needed.

Because of the fact that the hardware UART interface of the keyboard controller is
reserved for the future connection of a PS2 keyboard and the ATMega 8 only has one
hardware UART  [48] the transmit function must be realized in software. This can be
done using any digital I/O pin of the microcontroller and the following function:

1 void suart_put(unsigned char d) {
  unsigned char _tmp_sreg = SREG; // Get status register
  __asm__ ("cli" ::); // Interrupt disable
  SUART_PORT |= 1 << SUART_BIT; // Go high

5   unsigned short frame = (3 << 9) + (d << 1);
  while (frame) { // Send frame

if (frame & 1)
SUART_PORT |= 1 << SUART_BIT;

else
10 SUART_PORT &= ~(1 << SUART_BIT);

frame >>= 1; // Next bit
_delay_us(SUART_BITL); // Wait bit time

  }
  SREG = _tmp_sreg; // Restore status register

15 }

Listing 18: software UART transmit function.

Sending a byte through UART is fairly simple: frst, interrupts need to be disabled dur-
ing the body of the function, forming an “atomic” section which is not interrupted. This
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is done by saving the status register of the AVR and turning off the interrupts (line 2
and 3) and restoring the status register before return to reset the state of the interrupt
fag (line 14).

Once this is done a UART “frame” can be assembled. Since this function transmits eight
data bits, one stop bit and no parity bit a frame can be assembled in a very simple way:
bit zero is always low and the start bit. Then the eight data bits follow and then the
stop bit (always high) follows. After the stop bit the line remains high to indicate idle
mode.

When the frame is assembled, (line 5) it simply needs to be shifted out through the pin
(lines 6 to 13) and after shifting a bit out the microcontroller must wait the bit time
(line 12). By knowing the processor clock speed and the desired baud rate, the waiting
time can be calculated by the following formula:

SUARTbit length=
MCU cycle length [µs ]

(desired) BAUD
 (= macro “SUART_BITL”).

In  listing  18 C macros are  used to  encapsulate the port  and speed settings to be
changed easily later on. They are not shown in the excerpt.

4.2.4 Possible disadvantages
Implementing a  custom keyboard with  tactile  switch  buttons brings some possible
disadvantages with it, which are:

• the keyboard provides an unusual feeling of key press since it is small and the
switches need a high pressure. To ensure an even better usage the USART was
reserved to enable the connection of a PS2 in the future.

• every key has another debouncing  behaviour.  In  the presented software all
keys are detected using the same software debouncing time. This might lead to
key recognition problems but the usage shows that it works fairly good.

• there are no security mechanisms integrated to handle the event of two input
keys (not the special keys) being pressed at the same time. Simply the key with
the highest row and highest column count gets selected because it is scanned
last. For example pressing the one (1) and the space key at the exact same time
the space key gets recognized. Since this is not a big problem and relies on the
user there is no special handling need.

4.3 BOM
Since the several software and hardware aspects of this project are discussed up to here,
the construction the handheld Apple ][ emulator can be started. The “construction”, which
consists of many steps from creating the schematic over purchasing the parts, soldering
them together and building the final prototype takes a long time. All these steps are not
described here, because this document is not a guide to build electronic projects. Instead
only the result: the BOM, photos of the final result and the schematic are presented.
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The bill of material (BOM) from table  9 lists all components used to build the proto-
type. The prototype cost about 35 € to build.

No Part Quantity Total
cost

For the emulation microcontroller

1 3.2'' LCD touch sensitive display, 320x240 pixel resolution 1 13,18 €

2 Atmel AVR ATMega 1284p PU (DIP 40) 1 6,35 €

3 IC socket for DIP 40 (GS 40) 1 0,13 €

4 Standard quartz, 20 MHz 1 0,17 €

5 Resistor, 10 kΩ (for TWI and controller reset) 4 0,07 €

6 Ceramic capacitor, 100 nF (for voltage regulators and ICs) 6 0,38 €

7 Ceramic capacitor, 22 pF 2 0,23 €

8 Electrolytic capacitor, 10 nF 2 0,40 €

9 2x17-pin female header connector (BL 2X17G8 2,54) (for the display) 1 0,49 €

10 5V voltage regulator (MCP 1702-5002) 1 0,45 €

11 3,3V voltage regulator (MCP 1702-3302) 1 0,45 €

12 2 GB MicroSD card (with adapter) 1 3,95 €

13 Pin header 1x07 (right angled) 1 0,06 €

14 1,8 kΩ (for SD card voltage divider) 3 0,05 €

15 3,3 kΩ (for SD card voltage divider) 3 0,05 €

16 Boxed header, 10 pin angled (WSL 10W) 1 0,13 €

17 Piezo sound transducer (SUMMER BM 15B) 1 0,75 €

18 Serial EEPROM, 128K, DIP 8 (24LC1025) 1 2,55 €

19 IC socket for DIP 8 (GS 8) 1 0,04 €

20 NPN transistor (BC 548A) 1 0,03 €

For the keyboard microcontroller

21 Tactile switch, 6x6x6 mm 52 0,82 €

22 Atmel AVR ATMega 8, P-DIP 28 1 1,85 €

23 IC socket for DIP 28 (GS 28-S) 1 0,09 €

24 Ceramic capacitor, 100 nF 1 0,07 €

25 Resistor, 10 kΩ (for row pull-down) 4 0,07 €

26 2x2-pin female header, angled (MPE 095-2-004) 1 0,24 €

General

27 Stripboard (hard paper), 150x100 mm (H25SR150) 1 1,45 €

28 Battery holder, 4xAAA (HALTER 4XUM4-NLF) 1 0,45 €

29 Switch 1 0,14 €

30 Acrylic, around 150x100x2 mm - - 

31 Stranded wires, different colors (around 7 m) - - 

– 76 –



Chapter 4: Hardware implementation

No Part Quantity Total
cost

32 Various screws and nuts - - 

33 Solder - - 

Total cost: 35,09 €

Table 9: bill of materials for the prototype. The prototype cost about 35€.

4.4 The prototype

Figure 16: rear of the prototype with the battery pack and
a view of the wiring.

Figure 17: front image of the final (revision 3) prototype
with keyboard overlay and all components.

Figure 18: top view of the prototype without display and all
other components attached.
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Using all the components from the bill of materials and some skills in building and sol-
dering the aimed battery powered, portable handheld Apple ][ emulator is created. As
seen in the BOM the device is powered by four standard AAA batteries giving between
six and seven volts at  around 1200mA. Running the emulator with a mean display
brightness  (at  a  power  consumption  of  around  105mA)  the entire  emulator  takes
130mA (140mA with SD card in action). This should give a lifetime of around seven
hours with a security deduction of 25% because of the dropping voltage. The voltage
regulators will fail if the →dropout voltage is passed.

The previous images show the fnally  created prototype (revision 3)  from different
viewing angles with all its components.

4.5 Schematic of the prototype
The schematic of the prototype was made with the EAGLE Layout Editor 6.5.0 and is
shown on the next page in fgure 19. It is self-explaining with the information from the
previous chapters. 

There are still some parts of the electronic side of the project which are not covered in this
documentation, because it would go beyond the scope of this thesis. All these not covered
parts like the oscillating circuit  or the voltage regulator setup have common “standard”
solutions so that there is no need for explanation.
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Figure 19: schematic of the entire Apple ][ emulator circuit with keyboard controller.
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Chapter 5: Conclusion &
Outlook

5.1 Conclusion
The target of this work is the development and implementation of a portable, battery
driven handheld device which emulates the entire Apple ][ computer system. And to
take it short this target has been reached successfully as the prior chapter(s) describe.
So one can take a recap of the demand profle for this thesis from the beginning (p. 7)
and spot the achieved requirements out of this profle:

✔ implementation of a 6502 microprocessor without the decimal mode in C
or assembly language – as described in chapter 3 “Software implementation“
(p. 29) the 6502 microprocessor was successfully implemented in C and in AVR
RISC assembly language. The assembly language was chosen for the fnal solu-
tion, because of its high optimization level and major speed improvement.

✔ interfacing a  TFT display  with video RAM –  as  described in  section  4.1.2
“Interfacing the display“ (p. 66) a custom driver was written for the used display
controller, utilizing some hardware features of the display to speed up the ren-
dering of text to it by using the “burst” mode. 

✔ sketching a custom keyboard with controller – to provide a “historical” ac-
curate  device a custom keyboard was developed with the original  keyboard
layout. See section 4.2 “The “keyboard” microcontroller“ (p. 72) for details.

✔ realization of the Von Neumann architecture on the Harvard architecture
of the microcontroller – by implementing the assembler version of the 6502
microprocessor  emulator,  this  requirement  is  satisfed:  the structure  of  the
Apple  ][  system (Von Neumann architecture)  was  mapped to  the microcon-
troller (Harvard architecture), for example the proceed of placing all ROMs in
the program memory.

✔ implementation of different memory accesses (RAM, ROM, mapped I/O) –
as described in section “Memory emulation“ (p.  44),  this requirement is also
implemented. There is no way around targeting a working Apple ][ emulator
without distinguishing between different  types of memory accesses.  Besides
the distinction between RAM and ROM is not necessarily needed, the Harvard
architecture of the microcontroller forces a distinction because of missing static
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RAM to hold the ROM data.

✔ software loading  possibility –  this  is  a  very  important  feature in  order to
really use the created handheld device by running old programs which were
written for the Apple ][. In this thesis a microSD card is used (see section 3.3.4,
p.  58 and section  4.1.4, p.  70) to bring software on the device. The backend
menu lets the user browse through the disk images inside the root directory of
the card and select a program to load.

✔ buildup as a mobile handheld system – as demonstrated on the photos in
section 4.4 (p.  77) the result is a real working, battery powered, mobile hand-
held device based on the thoughts of all previous chapters.

✔ documentation of the result – for this requirement this entire document will
serve as an evidence.

By satisfying all this requirements for the thesis there are even more features which
were implemented, going beyond the scope of the demand profle. Those further fea-
tures are:

« providing a hibernation feature – in section 3.3.5 (p. 61) the feature of saving
the entire emulation state to an EEPROM (non-volatile memory) was described.
It enables the user to name and save the current state to one of ten slots and
recover it later continuing emulation from this point.

« implementation of a text user interface – a basic text user interface was
designed  to  allow  the  structured  input  of  numbers  and  strings  along  with
menus  and  displaying  everything  through  the  display  using  a  special,  nice
readable, 8x16 pixel font. This enables the device to be even more usable.

« the backend menu – in order to load or store hibernation states or perform
other confguration actions an emulator backend was added. By using the key
stroke “SHIFT + RESET” or “CTRL + RESET” one can stall the emulation and man-
age it.

« providing sound output – using a piezo buzzer, the Apple ][ emulator can also
output original sound effects.

« future possibility of interfacing an external keyboard – by adding and re-
serving some pins on the keyboard controller and carrying them out it is pos-
sible to adjust the software later on, in order to let the emulator work with an
external keyboard. This could be a PS2 keyboard for example.

« provision of not only an Apple ][ original but also an Apple ][+ – as request-
ed in the demand profle at the beginning the only version to implement was
an Apple ][ “original”. Further the Apple ][+ was also implemented, featuring the
Applesoft BASIC. The user can switch between both in the backend menu.

« other minor features – there are some other minor features like the backlight
brightness adjustment or reset ability of the emulator, which are not important,
but improve other parts of the emulator (backlight adjustment on the dura-
bility).
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5.1.1 Achieved emulator speed
Most  modern  emulation  or  virtualization  software  needs  a  fast  CPU  to  run  semi
modern systems smoothly. Despite the Apple ][ system is a very basic and old system
in  comparison  to  modern  systems,  they  share  the  same  structural  problems:  the
emulation overhead.  Hardware implementation is  simple.  But  software implement-
ation of hardware features could become very complex and CPU time consuming. The
emulator software must store state variables for the hardware state and keep track of
them. This overfow data needs to be managed, which consumes further time. As it
turned out in this document the memory mapped I/O is a great problem, because of
the many conditionals to check in order to cover every I/O case. A hardware implemen-
tation of this part through a simple address decoder is very simple and even faster as
it could be in software.

Figure 20 shows the measured performance data with different screen refresh rates
for different use cases. The “Monitor” use case is the simple command line prompt of
the Apple ][. The “BIORYTHM” is a graphical demonstration program from the DOS 3.3
foppy disk and the BASIC loop is a simple infnite loop, pumping out a string as fast as
possible from a BASIC program. 

Reducing the frames per second count does not affect the emulation speed seriously,
except for the graphical intensive demo program. Also between the very high opti-
mization compiler  fag  and the standard optimization fag (for  program size)  is  no
major difference. Using the “O3” compiler fag will cause an unstable behaviour of the
emulator through the very strong optimizations.

Since only a  little  bit  of  performance is  missing,  it  has been tried  to overclock  the
ATMega 1284p with a 24 MHz and 25 MHz crystal clock. In both cases the emulator did
not even start.  So with the clock speed at  its  limit  and the  assembler  code highly
optimized, there is no possibility to improve the performance in the current environ-
ment.

The performance of the created emulator is still  good as it performs the 1,023,000
clock cycles of the MOS 6502 microprocessor in around 1.19 seconds. This is a variance
of only 19% of the original towards the discussed speed problems. The resulting device
is totally usable and reacts like a normal Apple ][ computer.

– 82 –

Figure 20: graphical representation of the final performance data.
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5.1.2 Unmentioned aspects
This document shows the implementation of the Apple ][ emulator prototype. But de-
veloping this device was a long process. There were other features which did not get
into this document but should be mentioned here:

• breadboard, revision 1 and revision 2 boards – frst of all  the design was
evaluated and created using a breadboard (fgure 21). After this the frst proto-
type of the fnal prototype was soldered together (revision 1 board) with no ex-
ternal  communication abilities  (fgure  22 and  23).  After  that,  the  revision  2
added a serial communication port to download program data from a PC. It
also reduced the size of the board in order to be more compact (fgure 24, 25
and 26). After this the fnal prototype (revision 3) was created with a lot of mod-
ifcations described in this document.

 

Figure 21: early breadboard version.

 

Figure 22: back of the 1st prototype.

 

Figure 23: front of the 1st prototype.

 

Figure 24: back of the 2nd prototype.

 

Figure 25: front of the 2nd  prototype.

 

Figure 26: final 2nd  prototype.

• “datalink” for data connection from the PC to the emulator – the revision 2
board had some connectors to allow the connection of a serial terminal to it.
Using an USB-to-UART cable it was possible to connect the emulator to a PC. By
a special program written in Java, called “datalink”, it was possible to open disk
image fles and send them to the device. The code of this program was later
merged into the revision 3 emulator runtime environment, providing this fea-
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ture for fles on the SD card from the microcontroller and simplifying this step
of loading software.

• Apple ][ emulator for the computer – the really frst step of the project was
the creation of a computer based version of the Apple ][ emulator, to get into
the details. Since the “home programming language” of the author is Java, it
was implemented in Java and later in C. With moving to assembler, the com-
puter version was deprecated due to some bugs (especially in ADC and SBC).

5.2 Further development
By writing this document and thinking about the future features, which would be nice to
have, the author had some ideas for further improvement. Due to time constraints of this
thesis it is not possible to implement these new ideas, which are proposed in the following.

The most likely next task is the addition of an external PS2 keyboard, since the hard-
ware USART pins on the keyboard controller are reserved for this purpose and this
feature was mentioned some times in the previous chapters.

Additional features, which would be really nice to have are: game strobes, since some
games require this type of controller, Disk ][ drive foppy disk emulation or even the
full 48K of main memory enabling more memory for programs and the high resolution
mode. These features are simple to implement, but the key problem is heavy per-
formance loss which will degrade the emulated clock cycle speed of the 6502 micro-
processor emulation. This loss is caused by the growing length of the memory mapped
I/O conditional  statements, which need to check for even more cases for these im-
provements. So a way to replace the memory read macro in the implementation of the
6502 microprocessor emulation needs to be found to add new features.

Since it is written in assembly language, there is no way to speed it up any further. An
external static RAM IC could be connected to the microcontroller. It will serve as the
physical emulation of the 64K memory of the emulator. Then the ROM is placed in this
memory during startup and all memory access can be done very fast, because of a
unique interface without conditionals. But there will be two new major problems:

• interfacing an external static RAM IC needs 16 address lines and 8 bidirectional
data lines along with at least two control lines. Since the ATMega 1284p has no
pins left, the possible options are:

(1) using the display data bus and some other pins for these purposes. This
will result in performance losses, because of the output pins, which are
scattered over the entire microcontroller and need to be adjusted on
every access with more code.

(2) using another microcontroller, like the Atmega2560. It increases the 32
pins of the ATMega 1284p to 86 digital I/O pins which would do the job.
It is delivered as surface mount component in a smaller SMD package
and cannot be soldered easily. But “adapters” are available for this.

• recognition of memory mapped I/O. If a memory mapped I/O address is refer-
enced, like the speaker, a task needs to be performed without writing data or
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reading data. So an address decoder or another device, which is very fast and
can trigger further actions on special memory addresses on the address bus
between emulation microcontroller and the static RAM is needed.

If this obstacle of extending the RAM is taken, it would be very simple to add the other
features. It is the barrier for further development.
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6.1 Glossary
The following glossary explains some special terms, which are used within this document.
Every time a “→” sign is found in front of a word, a basic explanation can be found here.

ASCII – stands for “American Standard Code for Information Interchange” and is a very
common and popular 7 bit character-encoding scheme based on the English alphabet
with some special characters.

ARM – a RISC microprocessor instruction set architecture (ISA) developed by the British
company ARM Holdings. ARM processors are very popular in embedded devices like
smartphones, tablet PCs or set-top boxes.

BCD – binary-coded decimal numbers are used to represent fractional numbers accu-
rately. Every digit is represented by a fxed size of bits (mostly four). A BCD number
provides a bit block for every digit in the decimal number, generating the highest accu-
racy on calculation and rounding. For example the decimal number “1.42” is coded as
“0b0001.0100 0010” (0x1.42).  This mode was embedded in many early micropro-
cessors (like the MOS 6502) and is nowadays less important, because of IEEE754.

CRT – the “cathode ray tube” is a vacuum tube containing electron guns and a fuo-
rescent screen to display images. In the past CRTs were standard monitor devices until
the LCD screen came up. The screen is drawn line by line from left to right and top to
bottom. In this context a  HYSNC event is considered as the time gap when the elec-
tronic beam has reached the right end of a line and performs a “carriage return” to the
left end (or beginning) of the new line. A VSYNC event is then considered as the time
gap, when the electronic beam reaches the lower right point of the screen and moves
back to the top left point to start drawing a new frame. Generating an output signal
needs accurate timing to show an image.

DIP – the “dual in-line package” is a standard electronic device package with a rect-
angular housing and two parallel rows of I/O pins. The “plastic dual in-line package”
(PDIP) specifes the material of the housing of the die, which contains the IC.

Dropout voltage – is the smallest difference between the input and output voltage of
a voltage regulator. If the input voltage drops bellow the sum of the output voltage and
dropout voltage of the regulator, it fails to provide the regulated output voltage.

EEPROM – electrically erasable programmable read-only memory is a type of memory
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that is used to store small amounts of data in electronic devices. Since it is non-volatile,
the data remains without a steady power supply.

Flash memory – is an electronic, non-volatile memory used to store data. It was de-
veloped from EEPROMs in 1984 and is nowadays widely used in SSD hard disks, USB
sticks and other components. It is also used as program memory in the Atmel AVR 8 bit
microcontroller series.

IC – stands for “integrated circuit” and is considered as a set of electronic components
on a semiconducting chip. It has a much smaller size than a discrete circuit made out
of single logic gates.

ISA – the “instruction set architecture” specifes the set of operational codes (opcodes)
available on a processor and its general architecture, including register fles, interrupt
handling and other important parts of a processor. There are →RISC and CISC ISAs.

ISP – “in-system programming” is a way to program a microcontroller while it is inside
its electronic circuit.

Little endian – a byte encoding with the least signifcant byte comes frst followed by
the more signifcant bytes.

MCU – stands for “microcontroller unit”. See →microprocessor.

Microcontroller – a small “computer” on a single integrated circuit containing a pro-
cessor, memory and programmable input and output pins.

Microprocessor – also recognized as “CPU” or “processor” is a central processing unit
in the housing of an IC without any other hardware. It is only a multi-purpose compu-
tation  unit.  Together  with  parts  like  main  memory,  hard  disks,  a  motherboard,  a
graphics card and other peripherals a modern personal computer is formed. In con-
trast to microcontrollers this device can provide more computational power.

Nibble – half of a byte, represented by four bits.

PWM – “pulse width modulation” is a modulation technique to generate a square wave
with control over the length of the duty cycle. It allows the control of power passed to
an electronic device.

Raspberry Pi – a credit-card-sized single-board computer developed in the UK by the
Raspberry Pi  Foundation.  It  is a full  featured computer based on the →ARM archi-
tecture with the ability to run several Linux desktop and server operating systems for
various purposes.

RISC – “reduced instruction set computing” is a CPU design strategy to create a simpler
→ISA to archive higher performance through that simplicity. The opposite is a “com-
plex instruction set computing” (CISC) design strategy.

SPI – the “serial peripheral interface” bus is a synchronous serial data transmission
standard between electronic devices that operates in full duplex (while sending a byte
the sender receives also a byte from the receiver and vice-versa). See page 70 or Atmel
application note 151 [46].

SRAM – static random access memory is an integrated circuit that uses fip-fops to
store the state “statically”. The opposite is a DRAM, which uses less components, but all
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the memory values must be refreshed multiple times a second, which is done by a
specifc circuitry. This memory is mostly used for memory modules to use in a com-
puter. 

System call – a system call is the way how a user program can request resources from
the operating system kernel, e.g. access to a fle. They provide an essential interface
between programs and the operating system kernel to provide security and stability of
the system, since the kernel can control the usage of the hardware (e.g. memory pro-
tection).

TWI – the two wire interface or I2C (Inter-Integrated Circuit) is a multi-master computer
bus. The data is transmitted serial with the use of only two wires between up to 127
bus participants. See page 69.

U(S)ART –  the “universal  asynchronous  receiver  /  transmitter”  is  a  communication
interface to transmit data serial between two electronic devices on two lines: TXT and
RXD. Since it is an asynchronous communication the devices can send and receive at
the same time. An USART (“universal  synchronous /  asynchronous receiver /  trans-
mitter”) has also the ability to communicate serially with a clock line. Most Atmel AVR
microcontrollers of the ATMega series have a hardware USART interface with the lines
RXD and TXD and for synchronous communication also a XCK (clock) line.

UI – abbreviation for “user interface”.

Word – two bytes form a word – a 16 bit number, which can represent 65,536 distinct
symbols or numbers.

x86 architecture – this is a family of CISC ISAs, based initial on the Intel 8086 CPU,
with many extensions, making the architecture very strong and huge. Most modern
CPUs use this architecture.
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6.3 “Speed” measurement setup
To measure the speed of a certain operation on the microcontroller one can imple-
ment a “stopwatch” on the microcontroller. This will not give accurate results, because
the microcontroller, which should be measured, measures itself and distorts the result.

A better approach is to set an output pin before the operation, which should be mea-
sured, to logical high. If the operation is fnished the pin is pulled back to logical low.
Connecting this output pin to an Arduino Uno and loading the sketch from listing 19
onto the Uno creates a simple “stopwatch” setup. Since the output pin of the micro-
controller is logical high during the operation, the Uno can measure the duration this
pin remains high without distorting the microcontroller, which is measured, and print
the time on a serial terminal.

The sketch uses an Arduino pin as input which triggers an interrupt when the logical
level  at  the  pin  changes.  With  some  if–conditions  and  a  serial  connection  to  the
computer, the result data can be streamed very easily to the computer and picked
from there. The time inaccuracy of this method is far less than 1 ms, which is enough
for the purposes used in this document.

1 // Time watch to watch the state of a digital pin.
  // @see http://arduino.cc/de/Reference/AttachInterrupt
  unsigned long volatile duration;
  #define PIN 3
5
  void setup() {
    // Serial connection
    Serial.begin(9600);
    Serial.println("Time watch. 2014. Maximilian Strauch.");
10  // Set up port
    pinMode(PIN, INPUT);
    attachInterrupt(1, tick, CHANGE);
    duration = 0;
  }
15
  void loop() {
    // Nothing to do here
  }

20  void tick() {
    if (duration == 0) {
      // Save start time
      duration = micros();
    } else {
25    // One cylce: output time and reset
      duration = micros() - duration;
      Serial.println(duration);
      duration = 0;
    }
30  }

Listing 19: Arduino Uno sketch to measure the time an input pin is pulled high.
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